Mister Exam

Other calculators

Derivative of 1/(1+x^5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1   
------
     5
1 + x 
$$\frac{1}{x^{5} + 1}$$
1/(1 + x^5)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
      4  
  -5*x   
---------
        2
/     5\ 
\1 + x / 
$$- \frac{5 x^{4}}{\left(x^{5} + 1\right)^{2}}$$
The second derivative [src]
      /         5 \
    3 |      5*x  |
10*x *|-2 + ------|
      |          5|
      \     1 + x /
-------------------
             2     
     /     5\      
     \1 + x /      
$$\frac{10 x^{3} \left(\frac{5 x^{5}}{x^{5} + 1} - 2\right)}{\left(x^{5} + 1\right)^{2}}$$
The third derivative [src]
      /           10        5 \
    2 |       25*x      20*x  |
30*x *|-2 - --------- + ------|
      |             2        5|
      |     /     5\    1 + x |
      \     \1 + x /          /
-------------------------------
                   2           
           /     5\            
           \1 + x /            
$$\frac{30 x^{2} \left(- \frac{25 x^{10}}{\left(x^{5} + 1\right)^{2}} + \frac{20 x^{5}}{x^{5} + 1} - 2\right)}{\left(x^{5} + 1\right)^{2}}$$
7-я производная [src]
         /            15          25         5          10          20\
       3 |     31250*x     15625*x     1215*x    10500*x     37500*x  |
25200*x *|24 - --------- - --------- - ------- + --------- + ---------|
         |             3           5         5           2           4|
         |     /     5\    /     5\     1 + x    /     5\    /     5\ |
         \     \1 + x /    \1 + x /              \1 + x /    \1 + x / /
-----------------------------------------------------------------------
                                       3                               
                               /     5\                                
                               \1 + x /                                
$$\frac{25200 x^{3} \left(- \frac{15625 x^{25}}{\left(x^{5} + 1\right)^{5}} + \frac{37500 x^{20}}{\left(x^{5} + 1\right)^{4}} - \frac{31250 x^{15}}{\left(x^{5} + 1\right)^{3}} + \frac{10500 x^{10}}{\left(x^{5} + 1\right)^{2}} - \frac{1215 x^{5}}{x^{5} + 1} + 24\right)}{\left(x^{5} + 1\right)^{3}}$$