Mister Exam

Other calculators


1/√(1+x²)

Integral of 1/√(1+x²) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  1 + x     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}}\, dx$$
Integral(1/(sqrt(1 + x^2)), (x, 0, 1))
Detail solution

    TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=sec(_theta), substep=RewriteRule(rewritten=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=tan(_theta) + sec(_theta), constant=1, substep=ReciprocalRule(func=_u, context=1/_u, symbol=_u), context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta)], context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta), context=sec(_theta), symbol=_theta), restriction=True, context=1/(sqrt(x**2 + 1)), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                         /       ________\
 |      1                  |      /      2 |
 | ----------- dx = C + log\x + \/  1 + x  /
 |    ________                              
 |   /      2                               
 | \/  1 + x                                
 |                                          
/                                           
$$\int \frac{1}{\sqrt{x^{2} + 1}}\, dx = C + \log{\left(x + \sqrt{x^{2} + 1} \right)}$$
The graph
The answer [src]
   /      ___\
log\1 + \/ 2 /
$$\log{\left(1 + \sqrt{2} \right)}$$
=
=
   /      ___\
log\1 + \/ 2 /
$$\log{\left(1 + \sqrt{2} \right)}$$
log(1 + sqrt(2))
Numerical answer [src]
0.881373587019543
0.881373587019543
The graph
Integral of 1/√(1+x²) dx

    Use the examples entering the upper and lower limits of integration.