Mister Exam

Other calculators


1/(1+sin2x)

Integral of 1/(1+sin2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |  1 + sin(2*x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(2 x \right)} + 1}\, dx$$
Integral(1/(1 + sin(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                
 |                                 
 |      1                    1     
 | ------------ dx = C - ----------
 | 1 + sin(2*x)          1 + tan(x)
 |                                 
/                                  
$$\int \frac{1}{\sin{\left(2 x \right)} + 1}\, dx = C - \frac{1}{\tan{\left(x \right)} + 1}$$
The graph
The answer [src]
        1     
1 - ----------
    1 + tan(1)
$$1 - \frac{1}{1 + \tan{\left(1 \right)}}$$
=
=
        1     
1 - ----------
    1 + tan(1)
$$1 - \frac{1}{1 + \tan{\left(1 \right)}}$$
1 - 1/(1 + tan(1))
Numerical answer [src]
0.608979049230431
0.608979049230431
The graph
Integral of 1/(1+sin2x) dx

    Use the examples entering the upper and lower limits of integration.