Mister Exam

Other calculators

Integral of 1/(1-2x)^(3/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |           3/2   
 |  (1 - 2*x)      
 |                 
/                  
-2                 
$$\int\limits_{-2}^{-1} \frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}\, dx$$
Integral(1/((1 - 2*x)^(3/2)), (x, -2, -1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |      1                     1     
 | ------------ dx = C + -----------
 |          3/2            _________
 | (1 - 2*x)             \/ 1 - 2*x 
 |                                  
/                                   
$$\int \frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}\, dx = C + \frac{1}{\sqrt{1 - 2 x}}$$
The graph
The answer [src]
    ___     ___
  \/ 5    \/ 3 
- ----- + -----
    5       3  
$$- \frac{\sqrt{5}}{5} + \frac{\sqrt{3}}{3}$$
=
=
    ___     ___
  \/ 5    \/ 3 
- ----- + -----
    5       3  
$$- \frac{\sqrt{5}}{5} + \frac{\sqrt{3}}{3}$$
-sqrt(5)/5 + sqrt(3)/3
Numerical answer [src]
0.130136673689668
0.130136673689668

    Use the examples entering the upper and lower limits of integration.