Mister Exam

Other calculators


1/(1-sinx)

Integral of 1/(1-sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |        1        
 |  1*---------- dx
 |    1 - sin(x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{- \sin{\left(x \right)} + 1}\, dx$$
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |       1                    2     
 | 1*---------- dx = C - -----------
 |   1 - sin(x)                  /x\
 |                       -1 + tan|-|
/                                \2/
$$-{{2}\over{{{\sin x}\over{\cos x+1}}-1}}$$
The graph
The answer [src]
           2      
-2 - -------------
     -1 + tan(1/2)
$$-{{2\,\cos 1}\over{\sin 1-\cos 1-1}}-{{2}\over{\sin 1-\cos 1-1}}-2$$
=
=
           2      
-2 - -------------
     -1 + tan(1/2)
$$-2 - \frac{2}{-1 + \tan{\left(\frac{1}{2} \right)}}$$
Numerical answer [src]
2.40822344233583
2.40822344233583
The graph
Integral of 1/(1-sinx) dx

    Use the examples entering the upper and lower limits of integration.