Mister Exam

Other calculators

Integral of 1/(100+2t) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dt
 |  100 + 2*t   
 |              
/               
0               
0112t+100dt\int\limits_{0}^{1} \frac{1}{2 t + 100}\, dt
Integral(1/(100 + 2*t), (t, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2t+100u = 2 t + 100.

      Then let du=2dtdu = 2 dt and substitute du2\frac{du}{2}:

      12udu\int \frac{1}{2 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu2\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{2}

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)2\frac{\log{\left(u \right)}}{2}

      Now substitute uu back in:

      log(2t+100)2\frac{\log{\left(2 t + 100 \right)}}{2}

    Method #2

    1. Rewrite the integrand:

      12t+100=12(t+50)\frac{1}{2 t + 100} = \frac{1}{2 \left(t + 50\right)}

    2. The integral of a constant times a function is the constant times the integral of the function:

      12(t+50)dt=1t+50dt2\int \frac{1}{2 \left(t + 50\right)}\, dt = \frac{\int \frac{1}{t + 50}\, dt}{2}

      1. Let u=t+50u = t + 50.

        Then let du=dtdu = dt and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(t+50)\log{\left(t + 50 \right)}

      So, the result is: log(t+50)2\frac{\log{\left(t + 50 \right)}}{2}

  2. Add the constant of integration:

    log(2t+100)2+constant\frac{\log{\left(2 t + 100 \right)}}{2}+ \mathrm{constant}


The answer is:

log(2t+100)2+constant\frac{\log{\left(2 t + 100 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 |     1              log(100 + 2*t)
 | --------- dt = C + --------------
 | 100 + 2*t                2       
 |                                  
/                                   
12t+100dt=C+log(2t+100)2\int \frac{1}{2 t + 100}\, dt = C + \frac{\log{\left(2 t + 100 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.02.5
The answer [src]
log(102)   log(100)
-------- - --------
   2          2    
log(100)2+log(102)2- \frac{\log{\left(100 \right)}}{2} + \frac{\log{\left(102 \right)}}{2}
=
=
log(102)   log(100)
-------- - --------
   2          2    
log(100)2+log(102)2- \frac{\log{\left(100 \right)}}{2} + \frac{\log{\left(102 \right)}}{2}
log(102)/2 - log(100)/2
Numerical answer [src]
0.00990131364808986
0.00990131364808986

    Use the examples entering the upper and lower limits of integration.