Integral of 1/(100+2t) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=2t+100.
Then let du=2dt and substitute 2du:
∫2u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=2∫u1du
-
The integral of u1 is log(u).
So, the result is: 2log(u)
Now substitute u back in:
2log(2t+100)
Method #2
-
Rewrite the integrand:
2t+1001=2(t+50)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(t+50)1dt=2∫t+501dt
-
Let u=t+50.
Then let du=dt and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(t+50)
So, the result is: 2log(t+50)
-
Add the constant of integration:
2log(2t+100)+constant
The answer is:
2log(2t+100)+constant
The answer (Indefinite)
[src]
/
|
| 1 log(100 + 2*t)
| --------- dt = C + --------------
| 100 + 2*t 2
|
/
∫2t+1001dt=C+2log(2t+100)
The graph
log(102) log(100)
-------- - --------
2 2
−2log(100)+2log(102)
=
log(102) log(100)
-------- - --------
2 2
−2log(100)+2log(102)
Use the examples entering the upper and lower limits of integration.