1 / | | 1 | --------- dt | 100 + 2*t | / 0
Integral(1/(100 + 2*t), (t, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 1 log(100 + 2*t) | --------- dt = C + -------------- | 100 + 2*t 2 | /
log(102) log(100) -------- - -------- 2 2
=
log(102) log(100) -------- - -------- 2 2
log(102)/2 - log(100)/2
Use the examples entering the upper and lower limits of integration.