Mister Exam

Other calculators

Integral of 1/(100+2t) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dt
 |  100 + 2*t   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1}{2 t + 100}\, dt$$
Integral(1/(100 + 2*t), (t, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |     1              log(100 + 2*t)
 | --------- dt = C + --------------
 | 100 + 2*t                2       
 |                                  
/                                   
$$\int \frac{1}{2 t + 100}\, dt = C + \frac{\log{\left(2 t + 100 \right)}}{2}$$
The graph
The answer [src]
log(102)   log(100)
-------- - --------
   2          2    
$$- \frac{\log{\left(100 \right)}}{2} + \frac{\log{\left(102 \right)}}{2}$$
=
=
log(102)   log(100)
-------- - --------
   2          2    
$$- \frac{\log{\left(100 \right)}}{2} + \frac{\log{\left(102 \right)}}{2}$$
log(102)/2 - log(100)/2
Numerical answer [src]
0.00990131364808986
0.00990131364808986

    Use the examples entering the upper and lower limits of integration.