Mister Exam

Other calculators

Integral of 1/(lnx)^1/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |      1        
 |  ---------- dx
 |    ________   
 |  \/ log(x)    
 |               
/                
1                
$$\int\limits_{1}^{2} \frac{1}{\sqrt{\log{\left(x \right)}}}\, dx$$
Integral(1/(sqrt(log(x))), (x, 1, 2))
The graph
The answer [src]
      ____       ____     /    ________\
- I*\/ pi  + I*\/ pi *erfc\I*\/ log(2) /
$$- i \sqrt{\pi} + i \sqrt{\pi} \operatorname{erfc}{\left(i \sqrt{\log{\left(2 \right)}} \right)}$$
=
=
      ____       ____     /    ________\
- I*\/ pi  + I*\/ pi *erfc\I*\/ log(2) /
$$- i \sqrt{\pi} + i \sqrt{\pi} \operatorname{erfc}{\left(i \sqrt{\log{\left(2 \right)}} \right)}$$
-i*sqrt(pi) + i*sqrt(pi)*erfc(i*sqrt(log(2)))
Numerical answer [src]
2.14503759910517
2.14503759910517

    Use the examples entering the upper and lower limits of integration.