Mister Exam

Other calculators

Integral of 1/ln(cosx)*cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     cos(x)     
 |  ----------- dx
 |  log(cos(x))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\log{\left(\cos{\left(x \right)} \right)}}\, dx$$
Integral(cos(x)/log(cos(x)), (x, 0, 1))
The answer [src]
  1               
  /               
 |                
 |     cos(x)     
 |  ----------- dx
 |  log(cos(x))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\log{\left(\cos{\left(x \right)} \right)}}\, dx$$
=
=
  1               
  /               
 |                
 |     cos(x)     
 |  ----------- dx
 |  log(cos(x))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\log{\left(\cos{\left(x \right)} \right)}}\, dx$$
Integral(cos(x)/log(cos(x)), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.