Mister Exam

Other calculators

Integral of 1/(5x-6)^5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |           5   
 |  (5*x - 6)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{\left(5 x - 6\right)^{5}}\, dx$$
Integral(1/((5*x - 6)^5), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                     
 |                                                                      
 |     1                                       1                        
 | ---------- dx = C - -------------------------------------------------
 |          5                                   3          4           2
 | (5*x - 6)           25920 - 86400*x - 60000*x  + 12500*x  + 108000*x 
 |                                                                      
/                                                                       
$$\int \frac{1}{\left(5 x - 6\right)^{5}}\, dx = C - \frac{1}{12500 x^{4} - 60000 x^{3} + 108000 x^{2} - 86400 x + 25920}$$
The graph
The answer [src]
-259 
-----
 5184
$$- \frac{259}{5184}$$
=
=
-259 
-----
 5184
$$- \frac{259}{5184}$$
-259/5184
Numerical answer [src]
-0.0499614197530864
-0.0499614197530864

    Use the examples entering the upper and lower limits of integration.