Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of -1/y Integral of -1/y
  • Integral of e^(x*(-5)) Integral of e^(x*(-5))
  • Integral of × Integral of ×
  • Integral of (4x)/(1+x^2) Integral of (4x)/(1+x^2)
  • Identical expressions

  • (one /cbrt(x)+sqrt(x))^ two
  • (1 divide by cubic root of (x) plus square root of (x)) squared
  • (one divide by cubic root of (x) plus square root of (x)) to the power of two
  • (1/cbrt(x)+√(x))^2
  • (1/cbrt(x)+sqrt(x))2
  • 1/cbrtx+sqrtx2
  • (1/cbrt(x)+sqrt(x))²
  • (1/cbrt(x)+sqrt(x)) to the power of 2
  • 1/cbrtx+sqrtx^2
  • (1 divide by cbrt(x)+sqrt(x))^2
  • (1/cbrt(x)+sqrt(x))^2dx
  • Similar expressions

  • (1/cbrt(x)-sqrt(x))^2

Integral of (1/cbrt(x)+sqrt(x))^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |                 2   
 |  /  1       ___\    
 |  |----- + \/ x |  dx
 |  |3 ___        |    
 |  \\/ x         /    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right)^{2}\, dx$$
Integral((1/(x^(1/3)) + sqrt(x))^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                                                 
 |                2           2                 7/6
 | /  1       ___\           x      3 ___   12*x   
 | |----- + \/ x |  dx = C + -- + 3*\/ x  + -------
 | |3 ___        |           2                 7   
 | \\/ x         /                                 
 |                                                 
/                                                  
$$\int \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right)^{2}\, dx = C + \frac{12 x^{\frac{7}{6}}}{7} + 3 \sqrt[3]{x} + \frac{x^{2}}{2}$$
The graph
The answer [src]
73
--
14
$$\frac{73}{14}$$
=
=
73
--
14
$$\frac{73}{14}$$
73/14
Numerical answer [src]
5.21428447430061
5.21428447430061

    Use the examples entering the upper and lower limits of integration.