Mister Exam

Other calculators

Integral of 1/(cos(x)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p           
  -           
  4           
  /           
 |            
 |     1      
 |  ------- dx
 |     2      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{\frac{p}{4}} \frac{1}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(1/(cos(x)^2), (x, 0, p/4))
The answer (Indefinite) [src]
  /                       
 |                        
 |    1             sin(x)
 | ------- dx = C + ------
 |    2             cos(x)
 | cos (x)                
 |                        
/                         
$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx = C + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The answer [src]
   /p\
sin|-|
   \4/
------
   /p\
cos|-|
   \4/
$$\frac{\sin{\left(\frac{p}{4} \right)}}{\cos{\left(\frac{p}{4} \right)}}$$
=
=
   /p\
sin|-|
   \4/
------
   /p\
cos|-|
   \4/
$$\frac{\sin{\left(\frac{p}{4} \right)}}{\cos{\left(\frac{p}{4} \right)}}$$
sin(p/4)/cos(p/4)

    Use the examples entering the upper and lower limits of integration.