Mister Exam

Other calculators


1/(cosxsinx)

Integral of 1/(cosxsinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |  cos(x)*sin(x)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$
Integral(1/(cos(x)*sin(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                      
 |                           /        2   \              
 |       1                log\-1 + sin (x)/              
 | ------------- dx = C - ----------------- + log(sin(x))
 | cos(x)*sin(x)                  2                      
 |                                                       
/                                                        
$$\int \frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = C - \frac{\log{\left(\sin^{2}{\left(x \right)} - 1 \right)}}{2} + \log{\left(\sin{\left(x \right)} \right)}$$
The graph
The answer [src]
     pi*I
oo - ----
      2  
$$\infty - \frac{i \pi}{2}$$
=
=
     pi*I
oo - ----
      2  
$$\infty - \frac{i \pi}{2}$$
oo - pi*i/2
Numerical answer [src]
44.5334688581098
44.5334688581098
The graph
Integral of 1/(cosxsinx) dx

    Use the examples entering the upper and lower limits of integration.