Mister Exam

Other calculators

Integral of 1/(cos(2x)-(sin(x))^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |                2      
 |  cos(2*x) - sin (x)   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{- \sin^{2}{\left(x \right)} + \cos{\left(2 x \right)}}\, dx$$
Integral(1/(cos(2*x) - sin(x)^2), (x, 0, 1))
The answer [src]
  1                        
  /                        
 |                         
 |           1             
 |  -------------------- dx
 |       2                 
 |  - sin (x) + cos(2*x)   
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \frac{1}{- \sin^{2}{\left(x \right)} + \cos{\left(2 x \right)}}\, dx$$
=
=
  1                        
  /                        
 |                         
 |           1             
 |  -------------------- dx
 |       2                 
 |  - sin (x) + cos(2*x)   
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \frac{1}{- \sin^{2}{\left(x \right)} + \cos{\left(2 x \right)}}\, dx$$
Integral(1/(-sin(x)^2 + cos(2*x)), (x, 0, 1))
Numerical answer [src]
0.179083582557689
0.179083582557689

    Use the examples entering the upper and lower limits of integration.