Mister Exam

Integral of xe^(-5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     -5*x   
 |  x*E     dx
 |            
/             
0             
$$\int\limits_{0}^{1} e^{- 5 x} x\, dx$$
Integral(x*E^(-5*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                 
 |                              -5*x
 |    -5*x          (-1 - 5*x)*e    
 | x*E     dx = C + ----------------
 |                         25       
/                                   
$$\int e^{- 5 x} x\, dx = C + \frac{\left(- 5 x - 1\right) e^{- 5 x}}{25}$$
The graph
The answer [src]
        -5
1    6*e  
-- - -----
25     25 
$$\frac{1}{25} - \frac{6}{25 e^{5}}$$
=
=
        -5
1    6*e  
-- - -----
25     25 
$$\frac{1}{25} - \frac{6}{25 e^{5}}$$
1/25 - 6*exp(-5)/25
Numerical answer [src]
0.0383828927202195
0.0383828927202195
The graph
Integral of xe^(-5x) dx

    Use the examples entering the upper and lower limits of integration.