Mister Exam

Other calculators

Integral of 1/(cos^2(2x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |     2            
 |  cos (2*x + 1)   
 |                  
/                   
0                   
$$\int\limits_{0}^{0} \frac{1}{\cos^{2}{\left(2 x + 1 \right)}}\, dx$$
Integral(1/(cos(2*x + 1)^2), (x, 0, 0))
The answer (Indefinite) [src]
  /                                         
 |                                          
 |       1                   tan(1/2 + x)   
 | ------------- dx = C - ------------------
 |    2                           2         
 | cos (2*x + 1)          -1 + tan (1/2 + x)
 |                                          
/                                           
$$\int \frac{1}{\cos^{2}{\left(2 x + 1 \right)}}\, dx = C - \frac{\tan{\left(x + \frac{1}{2} \right)}}{\tan^{2}{\left(x + \frac{1}{2} \right)} - 1}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.