Mister Exam

Other calculators

Integral of 1/((5x-2)^(4/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |           4/3   
 |  (5*x - 2)      
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(5 x - 2\right)^{\frac{4}{3}}}\, dx$$
Integral(1/((5*x - 2)^(4/3)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 |      1                      3       
 | ------------ dx = C - --------------
 |          4/3            3 __________
 | (5*x - 2)             5*\/ -2 + 5*x 
 |                                     
/                                      
$$\int \frac{1}{\left(5 x - 2\right)^{\frac{4}{3}}}\, dx = C - \frac{3}{5 \sqrt[3]{5 x - 2}}$$
The graph
The answer [src]
                              2/3
            /    2/3\   3*(-2)   
oo + oo*sign\(-5)   / - ---------
                            10   
$$\infty - \frac{3 \left(-2\right)^{\frac{2}{3}}}{10} + \infty \operatorname{sign}{\left(\left(-5\right)^{\frac{2}{3}} \right)}$$
=
=
                              2/3
            /    2/3\   3*(-2)   
oo + oo*sign\(-5)   / - ---------
                            10   
$$\infty - \frac{3 \left(-2\right)^{\frac{2}{3}}}{10} + \infty \operatorname{sign}{\left(\left(-5\right)^{\frac{2}{3}} \right)}$$
oo + oo*sign((-5)^(2/3)) - 3*(-2)^(2/3)/10
Numerical answer [src]
(3.89712981536781 + 1.44483025793354j)
(3.89712981536781 + 1.44483025793354j)

    Use the examples entering the upper and lower limits of integration.