1 / | | 1 | ------------ dx | 4/3 | (5*x - 2) | / 0
Integral(1/((5*x - 2)^(4/3)), (x, 0, 1))
There are multiple ways to do this integral.
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | 1 3 | ------------ dx = C - -------------- | 4/3 3 __________ | (5*x - 2) 5*\/ -2 + 5*x | /
2/3 / 2/3\ 3*(-2) oo + oo*sign\(-5) / - --------- 10
=
2/3 / 2/3\ 3*(-2) oo + oo*sign\(-5) / - --------- 10
oo + oo*sign((-5)^(2/3)) - 3*(-2)^(2/3)/10
(3.89712981536781 + 1.44483025793354j)
(3.89712981536781 + 1.44483025793354j)
Use the examples entering the upper and lower limits of integration.