Mister Exam

Other calculators


1/(3x+2)

Integral of 1/(3x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___            
 \/ 3             
   /              
  |               
  |        1      
  |   1*------- dx
  |     3*x + 2   
  |               
 /                
  ___             
\/ 3              
-----             
  3               
$$\int\limits_{\frac{\sqrt{3}}{3}}^{\sqrt{3}} 1 \cdot \frac{1}{3 x + 2}\, dx$$
Integral(1/(3*x + 2), (x, sqrt(3)/3, sqrt(3)))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |      1             log(3*x + 2)
 | 1*------- dx = C + ------------
 |   3*x + 2               3      
 |                                
/                                 
$$\int 1 \cdot \frac{1}{3 x + 2}\, dx = C + \frac{\log{\left(3 x + 2 \right)}}{3}$$
The graph
The answer [src]
     /      ___\      /        ___\
  log\2 + \/ 3 /   log\2 + 3*\/ 3 /
- -------------- + ----------------
        3                 3        
$$- \frac{\log{\left(\sqrt{3} + 2 \right)}}{3} + \frac{\log{\left(2 + 3 \sqrt{3} \right)}}{3}$$
=
=
     /      ___\      /        ___\
  log\2 + \/ 3 /   log\2 + 3*\/ 3 /
- -------------- + ----------------
        3                 3        
$$- \frac{\log{\left(\sqrt{3} + 2 \right)}}{3} + \frac{\log{\left(2 + 3 \sqrt{3} \right)}}{3}$$
Numerical answer [src]
0.218862866842353
0.218862866842353
The graph
Integral of 1/(3x+2) dx

    Use the examples entering the upper and lower limits of integration.