Mister Exam

Other calculators


(log2(3x+1))/3x+1

Integral of (log2(3x+1))/3x+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  /log(3*x + 1)*x    \   
 |  |-------------- + 1| dx
 |  \   log(2)*3       /   
 |                         
/                          
0                          
01(xlog(3x+1)3log(2)+1)dx\int\limits_{0}^{1} \left(\frac{x \log{\left(3 x + 1 \right)}}{3 \log{\left(2 \right)}} + 1\right)\, dx
Integral(log(3*x + 1)*x/(log(2)*3) + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      xlog(3x+1)3log(2)dx=xlog(3x+1)dx3log(2)\int \frac{x \log{\left(3 x + 1 \right)}}{3 \log{\left(2 \right)}}\, dx = \frac{\int x \log{\left(3 x + 1 \right)}\, dx}{3 \log{\left(2 \right)}}

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=log(3x+1)u{\left(x \right)} = \log{\left(3 x + 1 \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

        Then du(x)=33x+1\operatorname{du}{\left(x \right)} = \frac{3}{3 x + 1}.

        To find v(x)v{\left(x \right)}:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        3x22(3x+1)dx=3x23x+1dx2\int \frac{3 x^{2}}{2 \cdot \left(3 x + 1\right)}\, dx = \frac{3 \int \frac{x^{2}}{3 x + 1}\, dx}{2}

        1. Rewrite the integrand:

          x23x+1=x319+19(3x+1)\frac{x^{2}}{3 x + 1} = \frac{x}{3} - \frac{1}{9} + \frac{1}{9 \cdot \left(3 x + 1\right)}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            x3dx=xdx3\int \frac{x}{3}\, dx = \frac{\int x\, dx}{3}

            1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

              xdx=x22\int x\, dx = \frac{x^{2}}{2}

            So, the result is: x26\frac{x^{2}}{6}

          1. The integral of a constant is the constant times the variable of integration:

            (19)dx=x9\int \left(- \frac{1}{9}\right)\, dx = - \frac{x}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            19(3x+1)dx=13x+1dx9\int \frac{1}{9 \cdot \left(3 x + 1\right)}\, dx = \frac{\int \frac{1}{3 x + 1}\, dx}{9}

            1. Let u=3x+1u = 3 x + 1.

              Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

              19udu\int \frac{1}{9 u}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                13udu=1udu3\int \frac{1}{3 u}\, du = \frac{\int \frac{1}{u}\, du}{3}

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                So, the result is: log(u)3\frac{\log{\left(u \right)}}{3}

              Now substitute uu back in:

              log(3x+1)3\frac{\log{\left(3 x + 1 \right)}}{3}

            So, the result is: log(3x+1)27\frac{\log{\left(3 x + 1 \right)}}{27}

          The result is: x26x9+log(3x+1)27\frac{x^{2}}{6} - \frac{x}{9} + \frac{\log{\left(3 x + 1 \right)}}{27}

        So, the result is: x24x6+log(3x+1)18\frac{x^{2}}{4} - \frac{x}{6} + \frac{\log{\left(3 x + 1 \right)}}{18}

      So, the result is: x2log(3x+1)2x24+x6log(3x+1)183log(2)\frac{\frac{x^{2} \log{\left(3 x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{6} - \frac{\log{\left(3 x + 1 \right)}}{18}}{3 \log{\left(2 \right)}}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x+x2log(3x+1)2x24+x6log(3x+1)183log(2)x + \frac{\frac{x^{2} \log{\left(3 x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{6} - \frac{\log{\left(3 x + 1 \right)}}{18}}{3 \log{\left(2 \right)}}

  2. Now simplify:

    18x2log(3x+1)9x2+6x+xlog(324518553658426726783156020576256)2log(3x+1)108log(2)\frac{18 x^{2} \log{\left(3 x + 1 \right)} - 9 x^{2} + 6 x + x \log{\left(324518553658426726783156020576256 \right)} - 2 \log{\left(3 x + 1 \right)}}{108 \log{\left(2 \right)}}

  3. Add the constant of integration:

    18x2log(3x+1)9x2+6x+xlog(324518553658426726783156020576256)2log(3x+1)108log(2)+constant\frac{18 x^{2} \log{\left(3 x + 1 \right)} - 9 x^{2} + 6 x + x \log{\left(324518553658426726783156020576256 \right)} - 2 \log{\left(3 x + 1 \right)}}{108 \log{\left(2 \right)}}+ \mathrm{constant}


The answer is:

18x2log(3x+1)9x2+6x+xlog(324518553658426726783156020576256)2log(3x+1)108log(2)+constant\frac{18 x^{2} \log{\left(3 x + 1 \right)} - 9 x^{2} + 6 x + x \log{\left(324518553658426726783156020576256 \right)} - 2 \log{\left(3 x + 1 \right)}}{108 \log{\left(2 \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
                                        2                       2             
  /                                    x    log(1 + 3*x)   x   x *log(3*x + 1)
 |                                   - -- - ------------ + - + ---------------
 | /log(3*x + 1)*x    \                4         18        6          2       
 | |-------------- + 1| dx = C + x + -----------------------------------------
 | \   log(2)*3       /                               3*log(2)                
 |                                                                            
/                                                                             
x2log(3x+1)23(log(3x+1)27+3x22x18)23log2+x{{{{x^2\,\log \left(3\,x+1\right)}\over{2}}-{{3\,\left({{\log \left(3\,x+1\right)}\over{27}}+{{3\,x^2-2\,x}\over{18}}\right) }\over{2}}}\over{3\,\log 2}}+x
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
        1        4*log(4)
1 - --------- + ---------
    36*log(2)   27*log(2)
16log4+108log23108log2{{16\,\log 4+108\,\log 2-3}\over{108\,\log 2}}
=
=
        1        4*log(4)
1 - --------- + ---------
    36*log(2)   27*log(2)
136log(2)+4log(4)27log(2)+1- \frac{1}{36 \log{\left(2 \right)}} + \frac{4 \log{\left(4 \right)}}{27 \log{\left(2 \right)}} + 1
Numerical answer [src]
1.25622143404938
1.25622143404938
The graph
Integral of (log2(3x+1))/3x+1 dx

    Use the examples entering the upper and lower limits of integration.