Integral of (log2(3x+1))/3x+1 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3log(2)xlog(3x+1)dx=3log(2)∫xlog(3x+1)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=log(3x+1) and let dv(x)=x.
Then du(x)=3x+13.
To find v(x):
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2⋅(3x+1)3x2dx=23∫3x+1x2dx
-
Rewrite the integrand:
3x+1x2=3x−91+9⋅(3x+1)1
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xdx=3∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 6x2
-
The integral of a constant is the constant times the variable of integration:
∫(−91)dx=−9x
-
The integral of a constant times a function is the constant times the integral of the function:
∫9⋅(3x+1)1dx=9∫3x+11dx
-
Let u=3x+1.
Then let du=3dx and substitute 3du:
∫9u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3u1du=3∫u1du
-
The integral of u1 is log(u).
So, the result is: 3log(u)
Now substitute u back in:
3log(3x+1)
So, the result is: 27log(3x+1)
The result is: 6x2−9x+27log(3x+1)
So, the result is: 4x2−6x+18log(3x+1)
So, the result is: 3log(2)2x2log(3x+1)−4x2+6x−18log(3x+1)
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
The result is: x+3log(2)2x2log(3x+1)−4x2+6x−18log(3x+1)
-
Now simplify:
108log(2)18x2log(3x+1)−9x2+6x+xlog(324518553658426726783156020576256)−2log(3x+1)
-
Add the constant of integration:
108log(2)18x2log(3x+1)−9x2+6x+xlog(324518553658426726783156020576256)−2log(3x+1)+constant
The answer is:
108log(2)18x2log(3x+1)−9x2+6x+xlog(324518553658426726783156020576256)−2log(3x+1)+constant
The answer (Indefinite)
[src]
2 2
/ x log(1 + 3*x) x x *log(3*x + 1)
| - -- - ------------ + - + ---------------
| /log(3*x + 1)*x \ 4 18 6 2
| |-------------- + 1| dx = C + x + -----------------------------------------
| \ log(2)*3 / 3*log(2)
|
/
3log22x2log(3x+1)−23(27log(3x+1)+183x2−2x)+x
The graph
1 4*log(4)
1 - --------- + ---------
36*log(2) 27*log(2)
108log216log4+108log2−3
=
1 4*log(4)
1 - --------- + ---------
36*log(2) 27*log(2)
−36log(2)1+27log(2)4log(4)+1
Use the examples entering the upper and lower limits of integration.