Mister Exam

Other calculators

Integral of 1/((3x-1)ln(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |  (3*x - 1)*log(x)   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\left(3 x - 1\right) \log{\left(x \right)}}\, dx$$
Integral(1/((3*x - 1)*log(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                            /                    
 |                            |                     
 |        1                   |         1           
 | ---------------- dx = C +  | ----------------- dx
 | (3*x - 1)*log(x)           | (-1 + 3*x)*log(x)   
 |                            |                     
/                            /                      
$$\int \frac{1}{\left(3 x - 1\right) \log{\left(x \right)}}\, dx = C + \int \frac{1}{\left(3 x - 1\right) \log{\left(x \right)}}\, dx$$
The answer [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |  (-1 + 3*x)*log(x)   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\left(3 x - 1\right) \log{\left(x \right)}}\, dx$$
=
=
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |  (-1 + 3*x)*log(x)   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\left(3 x - 1\right) \log{\left(x \right)}}\, dx$$
Integral(1/((-1 + 3*x)*log(x)), (x, 0, 1))
Numerical answer [src]
-57.8040405928991
-57.8040405928991

    Use the examples entering the upper and lower limits of integration.