Mister Exam

Other calculators

Integral of nx^(x-1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     x - 1   
 |  n*x      dx
 |             
/              
0              
$$\int\limits_{0}^{1} n x^{x - 1}\, dx$$
Integral(n*x^(x - 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /          
 |                      |           
 |    x - 1             |  -1 + x   
 | n*x      dx = C + n* | x       dx
 |                      |           
/                      /            
$$\int n x^{x - 1}\, dx = C + n \int x^{x - 1}\, dx$$
The answer [src]
    1      
    /      
   |       
   |   x   
   |  x    
n* |  -- dx
   |  x    
   |       
  /        
  0        
$$n \int\limits_{0}^{1} \frac{x^{x}}{x}\, dx$$
=
=
    1      
    /      
   |       
   |   x   
   |  x    
n* |  -- dx
   |  x    
   |       
  /        
  0        
$$n \int\limits_{0}^{1} \frac{x^{x}}{x}\, dx$$
n*Integral(x^x/x, (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.