Mister Exam

Integral of |z| dz

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1 + 2*I      
    /         
   |          
   |    |z| dz
   |          
  /           
  0           
$$\int\limits_{0}^{1 + 2 i} \left|{z}\right|\, dz$$
Integral(|z|, (z, 0, 1 + 2*i))
The answer [src]
 1 + 2*I      
    /         
   |          
   |    |z| dz
   |          
  /           
  0           
$$\int\limits_{0}^{1 + 2 i} \left|{z}\right|\, dz$$
=
=
 1 + 2*I      
    /         
   |          
   |    |z| dz
   |          
  /           
  0           
$$\int\limits_{0}^{1 + 2 i} \left|{z}\right|\, dz$$
Integral(|z|, (z, 0, 1 + 2*i))
Numerical answer [src]
(1.11803398874989 + 2.23606797749979j)
(1.11803398874989 + 2.23606797749979j)

    Use the examples entering the upper and lower limits of integration.