Mister Exam

Integral of |x+y| dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  |x + y| dx
 |            
/             
-1            
$$\int\limits_{-1}^{1} \left|{x + y}\right|\, dx$$
Integral(|x + y|, (x, -1, 1))
The answer [src]
  1           
  /           
 |            
 |  |x + y| dx
 |            
/             
-1            
$$\int\limits_{-1}^{1} \left|{x + y}\right|\, dx$$
=
=
  1           
  /           
 |            
 |  |x + y| dx
 |            
/             
-1            
$$\int\limits_{-1}^{1} \left|{x + y}\right|\, dx$$
Integral(|x + y|, (x, -1, 1))

    Use the examples entering the upper and lower limits of integration.