Integral of |sinx|/x^p dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| |sin(x)| | -p
| -------- dx = C + | x *|sin(x)| dx
| p |
| x /
|
/
∫xp∣sin(x)∣dx=C+∫x−p∣sin(x)∣dx
/ p | \
_ | 1 - - | |
/ p\ |_ | 2 | |
Gamma|1 - -|* | | | -1/4|
\ 2/ 1 2 | p | |
|3/2, 2 - - | |
\ 2 | /
-------------------------------------
/ p\
2*Gamma|2 - -|
\ 2/
2Γ(2−2p)Γ(1−2p)1F2(1−2p23,2−2p−41)
=
/ p | \
_ | 1 - - | |
/ p\ |_ | 2 | |
Gamma|1 - -|* | | | -1/4|
\ 2/ 1 2 | p | |
|3/2, 2 - - | |
\ 2 | /
-------------------------------------
/ p\
2*Gamma|2 - -|
\ 2/
2Γ(2−2p)Γ(1−2p)1F2(1−2p23,2−2p−41)
gamma(1 - p/2)*hyper((1 - p/2,), (3/2, 2 - p/2), -1/4)/(2*gamma(2 - p/2))
Use the examples entering the upper and lower limits of integration.