Mister Exam

Other calculators

Integral of (-y)/(2+y^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   -y      
 |  ------ dy
 |       2   
 |  2 + y    
 |           
/            
0            
01(1)yy2+2dy\int\limits_{0}^{1} \frac{\left(-1\right) y}{y^{2} + 2}\, dy
Integral((-y)/(2 + y^2), (y, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |  -y      
 | ------ dy
 |      2   
 | 2 + y    
 |          
/           
Rewrite the integrand
           /    2*y     \                   
           |------------|         /0\       
           | 2          |         |-|       
 -y        \y  + 0*y + 2/         \2/       
------ = - -------------- + ----------------
     2           2                     2    
2 + y                       /   ___   \     
                            |-\/ 2    |     
                            |-------*y|  + 1
                            \   2     /     
or
  /           
 |            
 |  -y        
 | ------ dy  
 |      2    =
 | 2 + y      
 |            
/             
  
   /                
  |                 
  |     2*y         
- | ------------ dy 
  |  2              
  | y  + 0*y + 2    
  |                 
 /                  
--------------------
         2          
In the integral
   /                
  |                 
  |     2*y         
- | ------------ dy 
  |  2              
  | y  + 0*y + 2    
  |                 
 /                  
--------------------
         2          
do replacement
     2
u = y 
then
the integral =
   /                        
  |                         
  |   1                     
- | ----- du                
  | 2 + u                   
  |                         
 /              -log(2 + u) 
------------- = ------------
      2              2      
do backward replacement
   /                                
  |                                 
  |     2*y                         
- | ------------ dy                 
  |  2                              
  | y  + 0*y + 2                    
  |                        /     2\ 
 /                     -log\2 + y / 
-------------------- = -------------
         2                   2      
In the integral
0
do replacement
         ___ 
    -y*\/ 2  
v = ---------
        2    
then
the integral =
True
do backward replacement
True
Solution is:
       /     2\
    log\2 + y /
C - -----------
         2     
The answer (Indefinite) [src]
  /                           
 |                    /     2\
 |  -y             log\2 + y /
 | ------ dy = C - -----------
 |      2               2     
 | 2 + y                      
 |                            
/                             
(1)yy2+2dy=Clog(y2+2)2\int \frac{\left(-1\right) y}{y^{2} + 2}\, dy = C - \frac{\log{\left(y^{2} + 2 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.00.5
The answer [src]
log(2)   log(3)
------ - ------
  2        2   
log(3)2+log(2)2- \frac{\log{\left(3 \right)}}{2} + \frac{\log{\left(2 \right)}}{2}
=
=
log(2)   log(3)
------ - ------
  2        2   
log(3)2+log(2)2- \frac{\log{\left(3 \right)}}{2} + \frac{\log{\left(2 \right)}}{2}
log(2)/2 - log(3)/2
Numerical answer [src]
-0.202732554054082
-0.202732554054082

    Use the examples entering the upper and lower limits of integration.