Mister Exam

Other calculators

Integral of -x^2+7x+12e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 231                       
 ---                       
  25                       
  /                        
 |                         
 |  /   2             x\   
 |  \- x  + 7*x + 12*E / dx
 |                         
/                          
-1                         
$$\int\limits_{-1}^{\frac{231}{25}} \left(12 e^{x} + \left(- x^{2} + 7 x\right)\right)\, dx$$
Integral(-x^2 + 7*x + 12*E^x, (x, -1, 231/25))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                        3      2
 | /   2             x\              x   x    7*x 
 | \- x  + 7*x + 12*E / dx = C + 12*e  - -- + ----
 |                                       3     2  
/                                                 
$$\int \left(12 e^{x} + \left(- x^{2} + 7 x\right)\right)\, dx = C - \frac{x^{3}}{3} + \frac{7 x^{2}}{2} + 12 e^{x}$$
The graph
The answer [src]
                       231
                       ---
1501184       -1        25
------- - 12*e   + 12*e   
 46875                    
$$- \frac{12}{e} + \frac{1501184}{46875} + 12 e^{\frac{231}{25}}$$
=
=
                       231
                       ---
1501184       -1        25
------- - 12*e   + 12*e   
 46875                    
$$- \frac{12}{e} + \frac{1501184}{46875} + 12 e^{\frac{231}{25}}$$
1501184/46875 - 12*exp(-1) + 12*exp(231/25)
Numerical answer [src]
123640.073400331
123640.073400331

    Use the examples entering the upper and lower limits of integration.