Mister Exam

Other calculators


-x^(2)*e^x

Integral of -x^(2)*e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    2  x   
 |  -x *e  dx
 |           
/            
0            
01x2exdx\int\limits_{0}^{1} - x^{2} e^{x}\, dx
Integral((-x^2)*E^x, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x2u{\left(x \right)} = - x^{2} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

    Then du(x)=2x\operatorname{du}{\left(x \right)} = - 2 x.

    To find v(x)v{\left(x \right)}:

    1. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=2xu{\left(x \right)} = - 2 x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

    Then du(x)=2\operatorname{du}{\left(x \right)} = -2.

    To find v(x)v{\left(x \right)}:

    1. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    (2ex)dx=2exdx\int \left(- 2 e^{x}\right)\, dx = - 2 \int e^{x}\, dx

    1. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    So, the result is: 2ex- 2 e^{x}

  4. Now simplify:

    (x2+2x2)ex\left(- x^{2} + 2 x - 2\right) e^{x}

  5. Add the constant of integration:

    (x2+2x2)ex+constant\left(- x^{2} + 2 x - 2\right) e^{x}+ \mathrm{constant}


The answer is:

(x2+2x2)ex+constant\left(- x^{2} + 2 x - 2\right) e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 |   2  x             x    2  x        x
 | -x *e  dx = C - 2*e  - x *e  + 2*x*e 
 |                                      
/                                       
(x22x+2)ex-\left(x^2-2\,x+2\right)\,e^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5.02.5
The answer [src]
2 - e
2e2-e
=
=
2 - e
2e2 - e
Numerical answer [src]
-0.718281828459045
-0.718281828459045
The graph
Integral of -x^(2)*e^x dx

    Use the examples entering the upper and lower limits of integration.