Mister Exam

Other calculators

Integral of (-((x*y+1)/x)+y/x) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /  x*y + 1   y\   
 |  |- ------- + -| dy
 |  \     x      x/   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(\frac{y}{x} - \frac{x y + 1}{x}\right)\, dy$$
Integral(-(x*y + 1)/x + y/x, (y, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                         2
  /                                   x*y 
 |                            2   y + ----
 | /  x*y + 1   y\           y         2  
 | |- ------- + -| dy = C + --- - --------
 | \     x      x/          2*x      x    
 |                                        
/                                         
$$\int \left(\frac{y}{x} - \frac{x y + 1}{x}\right)\, dy = C + \frac{y^{2}}{2 x} - \frac{\frac{x y^{2}}{2} + y}{x}$$
The answer [src]
  1   1 - x
- - + -----
  x    2*x 
$$\frac{1 - x}{2 x} - \frac{1}{x}$$
=
=
  1   1 - x
- - + -----
  x    2*x 
$$\frac{1 - x}{2 x} - \frac{1}{x}$$
-1/x + (1 - x)/(2*x)

    Use the examples entering the upper and lower limits of integration.