Mister Exam

Integral of -xexp(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x         
  /         
 |          
 |      x   
 |  -x*e  dx
 |          
/           
0           
0xxexdx\int\limits_{0}^{x} - x e^{x}\, dx
Integral((-x)*exp(x), (x, 0, x))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = - x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = -1.

    To find v(x)v{\left(x \right)}:

    1. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (ex)dx=exdx\int \left(- e^{x}\right)\, dx = - \int e^{x}\, dx

    1. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    So, the result is: ex- e^{x}

  3. Now simplify:

    (1x)ex\left(1 - x\right) e^{x}

  4. Add the constant of integration:

    (1x)ex+constant\left(1 - x\right) e^{x}+ \mathrm{constant}


The answer is:

(1x)ex+constant\left(1 - x\right) e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        
 |                         
 |     x             x    x
 | -x*e  dx = C - x*e  + e 
 |                         
/                          
xexdx=Cxex+ex\int - x e^{x}\, dx = C - x e^{x} + e^{x}
The answer [src]
              x
-1 + (1 - x)*e 
(1x)ex1\left(1 - x\right) e^{x} - 1
=
=
              x
-1 + (1 - x)*e 
(1x)ex1\left(1 - x\right) e^{x} - 1
-1 + (1 - x)*exp(x)

    Use the examples entering the upper and lower limits of integration.