Mister Exam

Other calculators


(-2x^2-12x+6)cos6x

Integral of (-2x^2-12x+6)cos6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                
  /                                
 |                                 
 |  /     2           \            
 |  \- 2*x  - 12*x + 6/*cos(6*x) dx
 |                                 
/                                  
0                                  
01(2x212x+6)cos(6x)dx\int\limits_{0}^{1} \left(- 2 x^{2} - 12 x + 6\right) \cos{\left(6 x \right)}\, dx
Integral((-2*x^2 - 12*x + 6)*cos(6*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (2x212x+6)cos(6x)=2x2cos(6x)12xcos(6x)+6cos(6x)\left(- 2 x^{2} - 12 x + 6\right) \cos{\left(6 x \right)} = - 2 x^{2} \cos{\left(6 x \right)} - 12 x \cos{\left(6 x \right)} + 6 \cos{\left(6 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x2cos(6x))dx=2x2cos(6x)dx\int \left(- 2 x^{2} \cos{\left(6 x \right)}\right)\, dx = - 2 \int x^{2} \cos{\left(6 x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=cos(6x)\operatorname{dv}{\left(x \right)} = \cos{\left(6 x \right)}.

          Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

          To find v(x)v{\left(x \right)}:

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

            Now substitute uu back in:

            sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

          Now evaluate the sub-integral.

        2. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=x3u{\left(x \right)} = \frac{x}{3} and let dv(x)=sin(6x)\operatorname{dv}{\left(x \right)} = \sin{\left(6 x \right)}.

          Then du(x)=13\operatorname{du}{\left(x \right)} = \frac{1}{3}.

          To find v(x)v{\left(x \right)}:

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

            Now substitute uu back in:

            cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          (cos(6x)18)dx=cos(6x)dx18\int \left(- \frac{\cos{\left(6 x \right)}}{18}\right)\, dx = - \frac{\int \cos{\left(6 x \right)}\, dx}{18}

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

            Now substitute uu back in:

            sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

          So, the result is: sin(6x)108- \frac{\sin{\left(6 x \right)}}{108}

        So, the result is: x2sin(6x)3xcos(6x)9+sin(6x)54- \frac{x^{2} \sin{\left(6 x \right)}}{3} - \frac{x \cos{\left(6 x \right)}}{9} + \frac{\sin{\left(6 x \right)}}{54}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12xcos(6x))dx=12xcos(6x)dx\int \left(- 12 x \cos{\left(6 x \right)}\right)\, dx = - 12 \int x \cos{\left(6 x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(6x)\operatorname{dv}{\left(x \right)} = \cos{\left(6 x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

            Now substitute uu back in:

            sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          sin(6x)6dx=sin(6x)dx6\int \frac{\sin{\left(6 x \right)}}{6}\, dx = \frac{\int \sin{\left(6 x \right)}\, dx}{6}

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

            Now substitute uu back in:

            cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

          So, the result is: cos(6x)36- \frac{\cos{\left(6 x \right)}}{36}

        So, the result is: 2xsin(6x)cos(6x)3- 2 x \sin{\left(6 x \right)} - \frac{\cos{\left(6 x \right)}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        6cos(6x)dx=6cos(6x)dx\int 6 \cos{\left(6 x \right)}\, dx = 6 \int \cos{\left(6 x \right)}\, dx

        1. Let u=6xu = 6 x.

          Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

          cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

          Now substitute uu back in:

          sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

        So, the result is: sin(6x)\sin{\left(6 x \right)}

      The result is: x2sin(6x)32xsin(6x)xcos(6x)9+55sin(6x)54cos(6x)3- \frac{x^{2} \sin{\left(6 x \right)}}{3} - 2 x \sin{\left(6 x \right)} - \frac{x \cos{\left(6 x \right)}}{9} + \frac{55 \sin{\left(6 x \right)}}{54} - \frac{\cos{\left(6 x \right)}}{3}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=2x212x+6u{\left(x \right)} = - 2 x^{2} - 12 x + 6 and let dv(x)=cos(6x)\operatorname{dv}{\left(x \right)} = \cos{\left(6 x \right)}.

      Then du(x)=4x12\operatorname{du}{\left(x \right)} = - 4 x - 12.

      To find v(x)v{\left(x \right)}:

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

        Now substitute uu back in:

        sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

      Now evaluate the sub-integral.

    2. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=2x32u{\left(x \right)} = - \frac{2 x}{3} - 2 and let dv(x)=sin(6x)\operatorname{dv}{\left(x \right)} = \sin{\left(6 x \right)}.

      Then du(x)=23\operatorname{du}{\left(x \right)} = - \frac{2}{3}.

      To find v(x)v{\left(x \right)}:

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

        Now substitute uu back in:

        cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      cos(6x)9dx=cos(6x)dx9\int \frac{\cos{\left(6 x \right)}}{9}\, dx = \frac{\int \cos{\left(6 x \right)}\, dx}{9}

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

        Now substitute uu back in:

        sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

      So, the result is: sin(6x)54\frac{\sin{\left(6 x \right)}}{54}

    Method #3

    1. Rewrite the integrand:

      (2x212x+6)cos(6x)=2x2cos(6x)12xcos(6x)+6cos(6x)\left(- 2 x^{2} - 12 x + 6\right) \cos{\left(6 x \right)} = - 2 x^{2} \cos{\left(6 x \right)} - 12 x \cos{\left(6 x \right)} + 6 \cos{\left(6 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x2cos(6x))dx=2x2cos(6x)dx\int \left(- 2 x^{2} \cos{\left(6 x \right)}\right)\, dx = - 2 \int x^{2} \cos{\left(6 x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=cos(6x)\operatorname{dv}{\left(x \right)} = \cos{\left(6 x \right)}.

          Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

          To find v(x)v{\left(x \right)}:

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

            Now substitute uu back in:

            sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

          Now evaluate the sub-integral.

        2. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=x3u{\left(x \right)} = \frac{x}{3} and let dv(x)=sin(6x)\operatorname{dv}{\left(x \right)} = \sin{\left(6 x \right)}.

          Then du(x)=13\operatorname{du}{\left(x \right)} = \frac{1}{3}.

          To find v(x)v{\left(x \right)}:

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

            Now substitute uu back in:

            cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          (cos(6x)18)dx=cos(6x)dx18\int \left(- \frac{\cos{\left(6 x \right)}}{18}\right)\, dx = - \frac{\int \cos{\left(6 x \right)}\, dx}{18}

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

            Now substitute uu back in:

            sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

          So, the result is: sin(6x)108- \frac{\sin{\left(6 x \right)}}{108}

        So, the result is: x2sin(6x)3xcos(6x)9+sin(6x)54- \frac{x^{2} \sin{\left(6 x \right)}}{3} - \frac{x \cos{\left(6 x \right)}}{9} + \frac{\sin{\left(6 x \right)}}{54}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12xcos(6x))dx=12xcos(6x)dx\int \left(- 12 x \cos{\left(6 x \right)}\right)\, dx = - 12 \int x \cos{\left(6 x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(6x)\operatorname{dv}{\left(x \right)} = \cos{\left(6 x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

            Now substitute uu back in:

            sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          sin(6x)6dx=sin(6x)dx6\int \frac{\sin{\left(6 x \right)}}{6}\, dx = \frac{\int \sin{\left(6 x \right)}\, dx}{6}

          1. Let u=6xu = 6 x.

            Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

            sin(u)36du\int \frac{\sin{\left(u \right)}}{36}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)6du=sin(u)du6\int \frac{\sin{\left(u \right)}}{6}\, du = \frac{\int \sin{\left(u \right)}\, du}{6}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)6- \frac{\cos{\left(u \right)}}{6}

            Now substitute uu back in:

            cos(6x)6- \frac{\cos{\left(6 x \right)}}{6}

          So, the result is: cos(6x)36- \frac{\cos{\left(6 x \right)}}{36}

        So, the result is: 2xsin(6x)cos(6x)3- 2 x \sin{\left(6 x \right)} - \frac{\cos{\left(6 x \right)}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        6cos(6x)dx=6cos(6x)dx\int 6 \cos{\left(6 x \right)}\, dx = 6 \int \cos{\left(6 x \right)}\, dx

        1. Let u=6xu = 6 x.

          Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

          cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

          Now substitute uu back in:

          sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

        So, the result is: sin(6x)\sin{\left(6 x \right)}

      The result is: x2sin(6x)32xsin(6x)xcos(6x)9+55sin(6x)54cos(6x)3- \frac{x^{2} \sin{\left(6 x \right)}}{3} - 2 x \sin{\left(6 x \right)} - \frac{x \cos{\left(6 x \right)}}{9} + \frac{55 \sin{\left(6 x \right)}}{54} - \frac{\cos{\left(6 x \right)}}{3}

  2. Add the constant of integration:

    x2sin(6x)32xsin(6x)xcos(6x)9+55sin(6x)54cos(6x)3+constant- \frac{x^{2} \sin{\left(6 x \right)}}{3} - 2 x \sin{\left(6 x \right)} - \frac{x \cos{\left(6 x \right)}}{9} + \frac{55 \sin{\left(6 x \right)}}{54} - \frac{\cos{\left(6 x \right)}}{3}+ \mathrm{constant}


The answer is:

x2sin(6x)32xsin(6x)xcos(6x)9+55sin(6x)54cos(6x)3+constant- \frac{x^{2} \sin{\left(6 x \right)}}{3} - 2 x \sin{\left(6 x \right)} - \frac{x \cos{\left(6 x \right)}}{9} + \frac{55 \sin{\left(6 x \right)}}{54} - \frac{\cos{\left(6 x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                      
 |                                                                                2                      
 | /     2           \                   cos(6*x)   55*sin(6*x)                  x *sin(6*x)   x*cos(6*x)
 | \- 2*x  - 12*x + 6/*cos(6*x) dx = C - -------- + ----------- - 2*x*sin(6*x) - ----------- - ----------
 |                                          3            54                           3            9     
/                                                                                                        
(36x22)sin(6x)+12xcos(6x)182(6xsin(6x)+cos(6x))+6sin(6x)6{{-{{\left(36\,x^2-2\right)\,\sin \left(6\,x\right)+12\,x\,\cos \left(6\,x\right)}\over{18}}-2\,\left(6\,x\,\sin \left(6\,x\right)+ \cos \left(6\,x\right)\right)+6\,\sin \left(6\,x\right)}\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
1   71*sin(6)   4*cos(6)
- - --------- - --------
3       54         9    
1371sin6+24cos654{{1}\over{3}}-{{71\,\sin 6+24\,\cos 6}\over{54}}
=
=
1   71*sin(6)   4*cos(6)
- - --------- - --------
3       54         9    
4cos(6)9+1371sin(6)54- \frac{4 \cos{\left(6 \right)}}{9} + \frac{1}{3} - \frac{71 \sin{\left(6 \right)}}{54}
Numerical answer [src]
0.273970620231758
0.273970620231758
The graph
Integral of (-2x^2-12x+6)cos6x dx

    Use the examples entering the upper and lower limits of integration.