Mister Exam

Other calculators

Integral of -(1/(y-y^2)) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0          
  /          
 |           
 |   -1      
 |  ------ dy
 |       2   
 |  y - y    
 |           
/            
0            
$$\int\limits_{0}^{0} \left(- \frac{1}{- y^{2} + y}\right)\, dy$$
Integral(-1/(y - y^2), (y, 0, 0))
The answer (Indefinite) [src]
  /                                        
 |                                         
 |  -1                                     
 | ------ dy = C - log(2*y) + log(-2 + 2*y)
 |      2                                  
 | y - y                                   
 |                                         
/                                          
$$\int \left(- \frac{1}{- y^{2} + y}\right)\, dy = C - \log{\left(2 y \right)} + \log{\left(2 y - 2 \right)}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.