Mister Exam

Other calculators


-1/(x*log(x))

Integral of -1/(x*log(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |    -1       
 |  -------- dx
 |  x*log(x)   
 |             
/              
0              
01(1xlog(x))dx\int\limits_{0}^{1} \left(- \frac{1}{x \log{\left(x \right)}}\right)\, dx
Integral(-1/(x*log(x)), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (1xlog(x))dx=1xlog(x)dx\int \left(- \frac{1}{x \log{\left(x \right)}}\right)\, dx = - \int \frac{1}{x \log{\left(x \right)}}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      log(log(x))\log{\left(\log{\left(x \right)} \right)}

    So, the result is: log(log(x))- \log{\left(\log{\left(x \right)} \right)}

  2. Add the constant of integration:

    log(log(x))+constant- \log{\left(\log{\left(x \right)} \right)}+ \mathrm{constant}


The answer is:

log(log(x))+constant- \log{\left(\log{\left(x \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |   -1                         
 | -------- dx = C - log(log(x))
 | x*log(x)                     
 |                              
/                               
(1xlog(x))dx=Clog(log(x))\int \left(- \frac{1}{x \log{\left(x \right)}}\right)\, dx = C - \log{\left(\log{\left(x \right)} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90020000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
47.8772101199067
47.8772101199067
The graph
Integral of -1/(x*log(x)) dx

    Use the examples entering the upper and lower limits of integration.