Mister Exam

Other calculators

Integral of -(9)/(cos²x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |    -9      
 |  ------- dx
 |     2      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \left(- \frac{9}{\cos^{2}{\left(x \right)}}\right)\, dx$$
Integral(-9/cos(x)^2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         
 |                          
 |   -9             9*sin(x)
 | ------- dx = C - --------
 |    2              cos(x) 
 | cos (x)                  
 |                          
/                           
$$\int \left(- \frac{9}{\cos^{2}{\left(x \right)}}\right)\, dx = C - \frac{9 \sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The graph
The answer [src]
-9*sin(1)
---------
  cos(1) 
$$- \frac{9 \sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
=
=
-9*sin(1)
---------
  cos(1) 
$$- \frac{9 \sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
-9*sin(1)/cos(1)
Numerical answer [src]
-14.0166695218941
-14.0166695218941

    Use the examples entering the upper and lower limits of integration.