Mister Exam

Other calculators

Integral of (-4*y^2-15)/15 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ____               
 \/ 15                
    /                 
   |                  
   |         2        
   |    - 4*y  - 15   
   |    ----------- dy
   |         15       
   |                  
  /                   
   ____               
-\/ 15                
$$\int\limits_{- \sqrt{15}}^{\sqrt{15}} \frac{- 4 y^{2} - 15}{15}\, dy$$
Integral((-4*y^2 - 15)/15, (y, -sqrt(15), sqrt(15)))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             
 |                              
 |      2                      3
 | - 4*y  - 15              4*y 
 | ----------- dy = C - y - ----
 |      15                   45 
 |                              
/                               
$$\int \frac{- 4 y^{2} - 15}{15}\, dy = C - \frac{4 y^{3}}{45} - y$$
The graph
The answer [src]
      ____
-14*\/ 15 
----------
    3     
$$- \frac{14 \sqrt{15}}{3}$$
=
=
      ____
-14*\/ 15 
----------
    3     
$$- \frac{14 \sqrt{15}}{3}$$
-14*sqrt(15)/3
Numerical answer [src]
-18.0739222823013
-18.0739222823013

    Use the examples entering the upper and lower limits of integration.