Mister Exam

Other calculators

Integral of (-5*x^3+40*x^2+15*x+-59)/[(x^3-10*x^2+x-10)*(x-10)] dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 40                                  
  /                                  
 |                                   
 |         3       2                 
 |    - 5*x  + 40*x  + 15*x - 59     
 |  ------------------------------ dx
 |  / 3       2         \            
 |  \x  - 10*x  + x - 10/*(x - 10)   
 |                                   
/                                    
20                                   
$$\int\limits_{20}^{40} \frac{\left(15 x + \left(- 5 x^{3} + 40 x^{2}\right)\right) - 59}{\left(x - 10\right) \left(\left(x + \left(x^{3} - 10 x^{2}\right)\right) - 10\right)}\, dx$$
Integral((-5*x^3 + 40*x^2 + 15*x - 59)/(((x^3 - 10*x^2 + x - 10)*(x - 10))), (x, 20, 40))
The graph
The answer [src]
-3/5 - atan(40) - 5*log(30) + 5*log(10) + atan(20)
$$- 5 \log{\left(30 \right)} - \operatorname{atan}{\left(40 \right)} - \frac{3}{5} + \operatorname{atan}{\left(20 \right)} + 5 \log{\left(10 \right)}$$
=
=
-3/5 - atan(40) - 5*log(30) + 5*log(10) + atan(20)
$$- 5 \log{\left(30 \right)} - \operatorname{atan}{\left(40 \right)} - \frac{3}{5} + \operatorname{atan}{\left(20 \right)} + 5 \log{\left(10 \right)}$$
-3/5 - atan(40) - 5*log(30) + 5*log(10) + atan(20)
Numerical answer [src]
-6.11802504544357
-6.11802504544357

    Use the examples entering the upper and lower limits of integration.