Mister Exam

Other calculators

Integral of -2e^(-y)cosx dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |      -y          
 |  -2*E  *cos(x) dy
 |                  
/                   
0                   
$$\int\limits_{0}^{1} - 2 e^{- y} \cos{\left(x \right)}\, dy$$
Integral((-2*exp(-y))*cos(x), (y, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |     -y                           -y
 | -2*E  *cos(x) dy = C + 2*cos(x)*e  
 |                                    
/                                     
$$\int - 2 e^{- y} \cos{\left(x \right)}\, dy = C + 2 e^{- y} \cos{\left(x \right)}$$
The answer [src]
                      -1
-2*cos(x) + 2*cos(x)*e  
$$- 2 \cos{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{e}$$
=
=
                      -1
-2*cos(x) + 2*cos(x)*e  
$$- 2 \cos{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{e}$$
-2*cos(x) + 2*cos(x)*exp(-1)

    Use the examples entering the upper and lower limits of integration.