Mister Exam

Other calculators

Integral of log(2*x+3)/(2*x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  log(2*x + 3)   
 |  ------------ dx
 |    2*x + 3      
 |                 
/                  
0                  
01log(2x+3)2x+3dx\int\limits_{0}^{1} \frac{\log{\left(2 x + 3 \right)}}{2 x + 3}\, dx
Integral(log(2*x + 3)/(2*x + 3), (x, 0, 1))
Detail solution
  1. Let u=2x+3u = 2 x + 3.

    Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

    log(u)2udu\int \frac{\log{\left(u \right)}}{2 u}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      log(u)udu=log(u)udu2\int \frac{\log{\left(u \right)}}{u}\, du = \frac{\int \frac{\log{\left(u \right)}}{u}\, du}{2}

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=1uu = \frac{1}{u}.

          Then let du=duu2du = - \frac{du}{u^{2}} and substitute du- du:

          (log(1u)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            log(1u)udu=log(1u)udu\int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du

            1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

              Then let du=duudu = - \frac{du}{u} and substitute du- du:

              (u)du\int \left(- u\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                udu=udu\int u\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              log(1u)22- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

            So, the result is: log(1u)22\frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

          Now substitute uu back in:

          log(u)22\frac{\log{\left(u \right)}^{2}}{2}

        Method #2

        1. Let u=log(u)u = \log{\left(u \right)}.

          Then let du=duudu = \frac{du}{u} and substitute dudu:

          udu\int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          Now substitute uu back in:

          log(u)22\frac{\log{\left(u \right)}^{2}}{2}

      So, the result is: log(u)24\frac{\log{\left(u \right)}^{2}}{4}

    Now substitute uu back in:

    log(2x+3)24\frac{\log{\left(2 x + 3 \right)}^{2}}{4}

  2. Now simplify:

    log(2x+3)24\frac{\log{\left(2 x + 3 \right)}^{2}}{4}

  3. Add the constant of integration:

    log(2x+3)24+constant\frac{\log{\left(2 x + 3 \right)}^{2}}{4}+ \mathrm{constant}


The answer is:

log(2x+3)24+constant\frac{\log{\left(2 x + 3 \right)}^{2}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                          2         
 | log(2*x + 3)          log (2*x + 3)
 | ------------ dx = C + -------------
 |   2*x + 3                   4      
 |                                    
/                                     
log(2x+3)2x+3dx=C+log(2x+3)24\int \frac{\log{\left(2 x + 3 \right)}}{2 x + 3}\, dx = C + \frac{\log{\left(2 x + 3 \right)}^{2}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
     2         2   
  log (3)   log (5)
- ------- + -------
     4         4   
log(3)24+log(5)24- \frac{\log{\left(3 \right)}^{2}}{4} + \frac{\log{\left(5 \right)}^{2}}{4}
=
=
     2         2   
  log (3)   log (5)
- ------- + -------
     4         4   
log(3)24+log(5)24- \frac{\log{\left(3 \right)}^{2}}{4} + \frac{\log{\left(5 \right)}^{2}}{4}
-log(3)^2/4 + log(5)^2/4
Numerical answer [src]
0.345835358291913
0.345835358291913

    Use the examples entering the upper and lower limits of integration.