Mister Exam

Other calculators

Integral of log(1+acosx)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 POST_GRBEK_SMALL_pi                     
          /                              
         |                               
         |          log(1 + acos(x))*1 dx
         |                               
        /                                
        0                                
$$\int\limits_{0}^{POST_{GRBEK SMALL \pi}} \log{\left(\operatorname{acos}{\left(x \right)} + 1 \right)} 1\, dx$$
Integral(log(1 + acos(x))*1, (x, 0, POST_GRBEK_SMALL_pi))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                                      /                                      
  /                                                  |                                       
 |                                                   |                  x                    
 | log(1 + acos(x))*1 dx = C + x*log(1 + acos(x)) +  | ----------------------------------- dx
 |                                                   |   ___________________                 
/                                                    | \/ -(1 + x)*(-1 + x) *(1 + acos(x))   
                                                     |                                       
                                                    /                                        
$$x\,\log \left| {\rm atan2}\left(\sqrt{1-x}\,\sqrt{x+1} , x\right)+1 \right| -\int {{{\left(2\,x^2\,e^{\log \left(x+1\right)+\log \left(1 -x\right)}+2\,x^4-2\,x^2\right)\,\log \left(e^{\log \left(x+1\right) +\log \left(1-x\right)}+x^2\right)+4\,x\,e^{{{\log \left(x+1\right) }\over{2}}+{{\log \left(1-x\right)}\over{2}}}\,{\rm atan2}\left(e^{ {{\log \left(x+1\right)}\over{2}}+{{\log \left(1-x\right)}\over{2}}} , x\right)+4\,x\,e^{{{\log \left(x+1\right)}\over{2}}+{{\log \left( 1-x\right)}\over{2}}}}\over{\left(\left(x^2-1\right)\,e^{\log \left( x+1\right)+\log \left(1-x\right)}+x^4-x^2\right)\,\left(\log \left(e ^{\log \left(x+1\right)+\log \left(1-x\right)}+x^2\right)\right)^2+ \left(\left(4\,x^2-4\right)\,e^{\log \left(x+1\right)+\log \left(1-x \right)}+4\,x^4-4\,x^2\right)\,{\rm atan2}\left(e^{{{\log \left(x+1 \right)}\over{2}}+{{\log \left(1-x\right)}\over{2}}} , x\right)^2+ \left(\left(8\,x^2-8\right)\,e^{\log \left(x+1\right)+\log \left(1-x \right)}+8\,x^4-8\,x^2\right)\,{\rm atan2}\left(e^{{{\log \left(x+1 \right)}\over{2}}+{{\log \left(1-x\right)}\over{2}}} , x\right)+ \left(4\,x^2-4\right)\,e^{\log \left(x+1\right)+\log \left(1-x \right)}+4\,x^4-4\,x^2}}}{\;dx}$$
The answer [src]
 POST_GRBEK_SMALL_pi                   
          /                            
         |                             
         |          log(1 + acos(x)) dx
         |                             
        /                              
        0                              
$$\int\limits_{0}^{POST_{GRBEK SMALL \pi}} \log{\left(\operatorname{acos}{\left(x \right)} + 1 \right)}\, dx$$
=
=
 POST_GRBEK_SMALL_pi                   
          /                            
         |                             
         |          log(1 + acos(x)) dx
         |                             
        /                              
        0                              
$$\int\limits_{0}^{POST_{GRBEK SMALL \pi}} \log{\left(\operatorname{acos}{\left(x \right)} + 1 \right)}\, dx$$

    Use the examples entering the upper and lower limits of integration.