Mister Exam

Other calculators


ln(cosx)/cos^2x

Integral of ln(cosx)/cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  log(cos(x))   
 |  ----------- dx
 |       2        
 |    cos (x)     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(\cos{\left(x \right)} \right)}}{\cos^{2}{\left(x \right)}}\, dx$$
The answer (Indefinite) [src]
                                                                          /                   2/x\  \       
                                                                          |                tan |-|  |       
                                                                          |     1              \2/  |    /x\
                                                                     2*log|----------- - -----------|*tan|-|
  /                                           /x\           2/x\          |       2/x\          2/x\|    \2/
 |                                       2*tan|-|      x*tan |-|          |1 + tan |-|   1 + tan |-||       
 | log(cos(x))               x                \2/            \2/          \        \2/           \2//       
 | ----------- dx = C + ------------ - ------------ - ------------ - ---------------------------------------
 |      2                       2/x\           2/x\           2/x\                         2/x\             
 |   cos (x)            -1 + tan |-|   -1 + tan |-|   -1 + tan |-|                 -1 + tan |-|             
 |                               \2/            \2/            \2/                          \2/             
/                                                                                                           
$$2\,\left(-{{\sin x\,\log \left({{1-{{\sin ^2x}\over{\left(\cos x+1 \right)^2}}}\over{{{\sin ^2x}\over{\left(\cos x+1\right)^2}}+1}} \right)}\over{\left(\cos x+1\right)\,\left({{\sin ^2x}\over{\left( \cos x+1\right)^2}}-1\right)}}-\arctan \left({{\sin x}\over{\cos x+1 }}\right)-{{\sin x}\over{\left(\cos x+1\right)\,\left({{\sin ^2x }\over{\left(\cos x+1\right)^2}}-1\right)}}\right)$$
The graph
The answer [src]
                                                        /                     2       \         
                                                        |      1           tan (1/2)  |         
                                                   2*log|------------- - -------------|*tan(1/2)
                      2                                 |       2               2     |         
      1            tan (1/2)        2*tan(1/2)          \1 + tan (1/2)   1 + tan (1/2)/         
-------------- - -------------- - -------------- - ---------------------------------------------
        2                2                2                                2                    
-1 + tan (1/2)   -1 + tan (1/2)   -1 + tan (1/2)                   -1 + tan (1/2)               
$$-2\,\arctan \left({{\sin 1}\over{\cos 1+1}}\right)+{{\sin 1\,\log \cos 1}\over{\cos 1}}+{{\sin 1}\over{\cos 1}}$$
=
=
                                                        /                     2       \         
                                                        |      1           tan (1/2)  |         
                                                   2*log|------------- - -------------|*tan(1/2)
                      2                                 |       2               2     |         
      1            tan (1/2)        2*tan(1/2)          \1 + tan (1/2)   1 + tan (1/2)/         
-------------- - -------------- - -------------- - ---------------------------------------------
        2                2                2                                2                    
-1 + tan (1/2)   -1 + tan (1/2)   -1 + tan (1/2)                   -1 + tan (1/2)               
$$\frac{1}{-1 + \tan^{2}{\left(\frac{1}{2} \right)}} - \frac{2 \log{\left(- \frac{\tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{1}{\tan^{2}{\left(\frac{1}{2} \right)} + 1} \right)} \tan{\left(\frac{1}{2} \right)}}{-1 + \tan^{2}{\left(\frac{1}{2} \right)}} - \frac{\tan^{2}{\left(\frac{1}{2} \right)}}{-1 + \tan^{2}{\left(\frac{1}{2} \right)}} - \frac{2 \tan{\left(\frac{1}{2} \right)}}{-1 + \tan^{2}{\left(\frac{1}{2} \right)}}$$
Numerical answer [src]
-0.401373695826309
-0.401373695826309
The graph
Integral of ln(cosx)/cos^2x dx

    Use the examples entering the upper and lower limits of integration.