1 / | | / 2\ | log\1 - x / | ----------- dx | 2 | x | / 0
Integral(log(1 - x^2)/x^2, (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), False), (ArccothRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), x**2 < 1)], context=1/(1 - x**2), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / 2\ // 2 \ / 2\ | log\1 - x / ||acoth(x) for x > 1| log\1 - x / | ----------- dx = C - 2*|< | - ----------- | 2 || 2 | x | x \\atanh(x) for x < 1/ | /
-2*log(2)
=
-2*log(2)
-2*log(2)
Use the examples entering the upper and lower limits of integration.