Mister Exam

Other calculators

Integral of log(1-x^2)/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     /     2\   
 |  log\1 - x /   
 |  ----------- dx
 |        2       
 |       x        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(1 - x^{2} \right)}}{x^{2}}\, dx$$
Integral(log(1 - x^2)/x^2, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), False), (ArccothRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=-1, c=1, context=1/(1 - x**2), symbol=x), x**2 < 1)], context=1/(1 - x**2), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                             
 |    /     2\            //               2    \      /     2\
 | log\1 - x /            ||acoth(x)  for x  > 1|   log\1 - x /
 | ----------- dx = C - 2*|<                    | - -----------
 |       2                ||               2    |        x     
 |      x                 \\atanh(x)  for x  < 1/              
 |                                                             
/                                                              
$$\int \frac{\log{\left(1 - x^{2} \right)}}{x^{2}}\, dx = C - 2 \left(\begin{cases} \operatorname{acoth}{\left(x \right)} & \text{for}\: x^{2} > 1 \\\operatorname{atanh}{\left(x \right)} & \text{for}\: x^{2} < 1 \end{cases}\right) - \frac{\log{\left(1 - x^{2} \right)}}{x}$$
The graph
The answer [src]
-2*log(2)
$$- 2 \log{\left(2 \right)}$$
=
=
-2*log(2)
$$- 2 \log{\left(2 \right)}$$
-2*log(2)
Numerical answer [src]
-1.38629436111302
-1.38629436111302

    Use the examples entering the upper and lower limits of integration.