Mister Exam

Other calculators

Integral of (lnxdx)/(x(1+lnx)^1/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |       log(x)        
 |  ---------------- dx
 |      ____________   
 |  x*\/ 1 + log(x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{x \sqrt{\log{\left(x \right)} + 1}}\, dx$$
Integral(log(x)/((x*sqrt(1 + log(x)))), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. There are multiple ways to do this integral.

              Method #1

              1. Rewrite the integrand:

              2. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of is when :

                  So, the result is:

                1. The integral of is when :

                The result is:

              Method #2

              1. Rewrite the integrand:

              2. Rewrite the integrand:

              3. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of is when :

                  So, the result is:

                1. The integral of is when :

                The result is:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          The result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                                            3/2
 |      log(x)                   ____________   2*(1 + log(x))   
 | ---------------- dx = C - 2*\/ 1 + log(x)  + -----------------
 |     ____________                                     3        
 | x*\/ 1 + log(x)                                               
 |                                                               
/                                                                
$$\int \frac{\log{\left(x \right)}}{x \sqrt{\log{\left(x \right)} + 1}}\, dx = C + \frac{2 \left(\log{\left(x \right)} + 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{\log{\left(x \right)} + 1}$$
The graph
The answer [src]
-4/3 + oo*I
$$- \frac{4}{3} + \infty i$$
=
=
-4/3 + oo*I
$$- \frac{4}{3} + \infty i$$
-4/3 + oo*i
Numerical answer [src]
(-1.0818887836703 + 202.533724926781j)
(-1.0818887836703 + 202.533724926781j)

    Use the examples entering the upper and lower limits of integration.