Mister Exam

Other calculators

Integral of lnx/(x(1+lnx)^1/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |       log(x)        
 |  ---------------- dx
 |      ____________   
 |  x*\/ 1 + log(x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{x \sqrt{\log{\left(x \right)} + 1}}\, dx$$
Integral(log(x)/((x*sqrt(1 + log(x)))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                              
 |                                                            3/2
 |      log(x)                   ____________   2*(1 + log(x))   
 | ---------------- dx = C - 2*\/ 1 + log(x)  + -----------------
 |     ____________                                     3        
 | x*\/ 1 + log(x)                                               
 |                                                               
/                                                                
$${{2\,\left(\log x+1\right)^{{{3}\over{2}}}}\over{3}}-2\,\sqrt{\log x+1}$$
The answer [src]
-4/3 + oo*I
$$\int_{0}^{1}{{{\log x}\over{x\,\sqrt{\log x+1}}}\;dx}$$
=
=
-4/3 + oo*I
$$- \frac{4}{3} + \infty i$$
Numerical answer [src]
(-1.0818887836703 + 202.533724926781j)
(-1.0818887836703 + 202.533724926781j)

    Use the examples entering the upper and lower limits of integration.