Mister Exam

You entered:

∫(lnx)²/xdx

What you mean?

Integral of ∫(lnx)²/xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     2    1     
 |  log (x)*-*1 dx
 |          x     
 |                
/                 
0                 
01log(x)21x1dx\int\limits_{0}^{1} \log{\left(x \right)}^{2} \cdot \frac{1}{x} 1\, dx
Integral(log(x)^2*1/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      u2du\int u^{2}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

      Now substitute uu back in:

      log(x)33\frac{\log{\left(x \right)}^{3}}{3}

    Method #2

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      log(1u)2udu\int \frac{\log{\left(\frac{1}{u} \right)}^{2}}{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (log(1u)2u)du=log(1u)2udu\int \left(- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{u}\right)\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}^{2}}{u}\, du

        1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          log(1u)33- \frac{\log{\left(\frac{1}{u} \right)}^{3}}{3}

        So, the result is: log(1u)33\frac{\log{\left(\frac{1}{u} \right)}^{3}}{3}

      Now substitute uu back in:

      log(x)33\frac{\log{\left(x \right)}^{3}}{3}

  2. Add the constant of integration:

    log(x)33+constant\frac{\log{\left(x \right)}^{3}}{3}+ \mathrm{constant}


The answer is:

log(x)33+constant\frac{\log{\left(x \right)}^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                         3   
 |    2    1            log (x)
 | log (x)*-*1 dx = C + -------
 |         x               3   
 |                             
/                              
(logx)33{{\left(\log x\right)^3}\over{3}}
The answer [src]
oo
%a{\it \%a}
=
=
oo
\infty
Numerical answer [src]
28568.3797156332
28568.3797156332

    Use the examples entering the upper and lower limits of integration.