Mister Exam

Other calculators

Integral of ln(y^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     / 2    \   
 |  log\y  + 1/ dy
 |                
/                 
0                 
01log(y2+1)dy\int\limits_{0}^{1} \log{\left(y^{2} + 1 \right)}\, dy
Integral(log(y^2 + 1), (y, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(y)=log(y2+1)u{\left(y \right)} = \log{\left(y^{2} + 1 \right)} and let dv(y)=1\operatorname{dv}{\left(y \right)} = 1.

    Then du(y)=2yy2+1\operatorname{du}{\left(y \right)} = \frac{2 y}{y^{2} + 1}.

    To find v(y)v{\left(y \right)}:

    1. The integral of a constant is the constant times the variable of integration:

      1dy=y\int 1\, dy = y

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    2y2y2+1dy=2y2y2+1dy\int \frac{2 y^{2}}{y^{2} + 1}\, dy = 2 \int \frac{y^{2}}{y^{2} + 1}\, dy

    1. Rewrite the integrand:

      y2y2+1=11y2+1\frac{y^{2}}{y^{2} + 1} = 1 - \frac{1}{y^{2} + 1}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        1dy=y\int 1\, dy = y

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1y2+1)dy=1y2+1dy\int \left(- \frac{1}{y^{2} + 1}\right)\, dy = - \int \frac{1}{y^{2} + 1}\, dy

          PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), True), (ArccothRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False), (ArctanhRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False)], context=1/(y**2 + 1), symbol=y)

        So, the result is: atan(y)- \operatorname{atan}{\left(y \right)}

      The result is: yatan(y)y - \operatorname{atan}{\left(y \right)}

    So, the result is: 2y2atan(y)2 y - 2 \operatorname{atan}{\left(y \right)}

  3. Now simplify:

    ylog(y2+1)2y+2atan(y)y \log{\left(y^{2} + 1 \right)} - 2 y + 2 \operatorname{atan}{\left(y \right)}

  4. Add the constant of integration:

    ylog(y2+1)2y+2atan(y)+constanty \log{\left(y^{2} + 1 \right)} - 2 y + 2 \operatorname{atan}{\left(y \right)}+ \mathrm{constant}


The answer is:

ylog(y2+1)2y+2atan(y)+constanty \log{\left(y^{2} + 1 \right)} - 2 y + 2 \operatorname{atan}{\left(y \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |    / 2    \                                 / 2    \
 | log\y  + 1/ dy = C - 2*y + 2*atan(y) + y*log\y  + 1/
 |                                                     
/                                                      
log(y2+1)dy=C+ylog(y2+1)2y+2atan(y)\int \log{\left(y^{2} + 1 \right)}\, dy = C + y \log{\left(y^{2} + 1 \right)} - 2 y + 2 \operatorname{atan}{\left(y \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
     pi         
-2 + -- + log(2)
     2          
2+log(2)+π2-2 + \log{\left(2 \right)} + \frac{\pi}{2}
=
=
     pi         
-2 + -- + log(2)
     2          
2+log(2)+π2-2 + \log{\left(2 \right)} + \frac{\pi}{2}
-2 + pi/2 + log(2)
Numerical answer [src]
0.263943507354842
0.263943507354842

    Use the examples entering the upper and lower limits of integration.