Integral of ln(y^2+1) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(y)=log(y2+1) and let dv(y)=1.
Then du(y)=y2+12y.
To find v(y):
-
The integral of a constant is the constant times the variable of integration:
∫1dy=y
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫y2+12y2dy=2∫y2+1y2dy
-
Rewrite the integrand:
y2+1y2=1−y2+11
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1dy=y
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−y2+11)dy=−∫y2+11dy
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), True), (ArccothRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False), (ArctanhRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False)], context=1/(y**2 + 1), symbol=y)
So, the result is: −atan(y)
The result is: y−atan(y)
So, the result is: 2y−2atan(y)
-
Now simplify:
ylog(y2+1)−2y+2atan(y)
-
Add the constant of integration:
ylog(y2+1)−2y+2atan(y)+constant
The answer is:
ylog(y2+1)−2y+2atan(y)+constant
The answer (Indefinite)
[src]
/
|
| / 2 \ / 2 \
| log\y + 1/ dy = C - 2*y + 2*atan(y) + y*log\y + 1/
|
/
∫log(y2+1)dy=C+ylog(y2+1)−2y+2atan(y)
The graph
−2+log(2)+2π
=
−2+log(2)+2π
Use the examples entering the upper and lower limits of integration.