1 / | | / 2 \ | log\y + 1/ dy | / 0
Integral(log(y^2 + 1), (y, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), True), (ArccothRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False), (ArctanhRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False)], context=1/(y**2 + 1), symbol=y)
So, the result is:
The result is:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / 2 \ / 2 \ | log\y + 1/ dy = C - 2*y + 2*atan(y) + y*log\y + 1/ | /
pi -2 + -- + log(2) 2
=
pi -2 + -- + log(2) 2
-2 + pi/2 + log(2)
Use the examples entering the upper and lower limits of integration.