Mister Exam

Other calculators

Integral of ln(y^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     / 2    \   
 |  log\y  + 1/ dy
 |                
/                 
0                 
$$\int\limits_{0}^{1} \log{\left(y^{2} + 1 \right)}\, dy$$
Integral(log(y^2 + 1), (y, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

          PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), True), (ArccothRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False), (ArctanhRule(a=1, b=1, c=1, context=1/(y**2 + 1), symbol=y), False)], context=1/(y**2 + 1), symbol=y)

        So, the result is:

      The result is:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |    / 2    \                                 / 2    \
 | log\y  + 1/ dy = C - 2*y + 2*atan(y) + y*log\y  + 1/
 |                                                     
/                                                      
$$\int \log{\left(y^{2} + 1 \right)}\, dy = C + y \log{\left(y^{2} + 1 \right)} - 2 y + 2 \operatorname{atan}{\left(y \right)}$$
The graph
The answer [src]
     pi         
-2 + -- + log(2)
     2          
$$-2 + \log{\left(2 \right)} + \frac{\pi}{2}$$
=
=
     pi         
-2 + -- + log(2)
     2          
$$-2 + \log{\left(2 \right)} + \frac{\pi}{2}$$
-2 + pi/2 + log(2)
Numerical answer [src]
0.263943507354842
0.263943507354842

    Use the examples entering the upper and lower limits of integration.