Mister Exam

Other calculators

Integral of (ln(x)/x)/(x*sqrt(1+ln(x)/x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |       /log(x)\        
 |       |------|        
 |       \  x   /        
 |  ------------------ dx
 |        ____________   
 |       /     log(x)    
 |  x*  /  1 + ------    
 |    \/         x       
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{\frac{1}{x} \log{\left(x \right)}}{x \sqrt{1 + \frac{\log{\left(x \right)}}{x}}}\, dx$$
Integral((log(x)/x)/((x*sqrt(1 + log(x)/x))), (x, 0, 1))
Numerical answer [src]
(-0.512046134055542 + 48401536530.301j)
(-0.512046134055542 + 48401536530.301j)

    Use the examples entering the upper and lower limits of integration.