Mister Exam

Other calculators

Integral of ln(x)/sqrt(x^2+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo               
  /               
 |                
 |     log(x)     
 |  ----------- dx
 |     ________   
 |    /  2        
 |  \/  x  + 3    
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 3}}\, dx$$
Integral(log(x)/sqrt(x^2 + 3), (x, 1, oo))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

            InverseHyperbolicRule(func=asinh, context=1/sqrt(_u**2 + 1), symbol=_u)

          So, the result is:

        Now substitute back in:

      So, the result is:

    Now evaluate the sub-integral.

  2. Don't know the steps in finding this integral.

    But the integral is

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                          /                                         
                         |                                          
                         |      /    ___\                           
  /                      |      |x*\/ 3 |                           
 |                       | asinh|-------|           /    ___\       
 |    log(x)             |      \   3   /           |x*\/ 3 |       
 | ----------- dx = C -  | -------------- dx + asinh|-------|*log(x)
 |    ________           |       x                  \   3   /       
 |   /  2                |                                          
 | \/  x  + 3           /                                           
 |                                                                  
/                                                                   
$$\int \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 3}}\, dx = C + \log{\left(x \right)} \operatorname{asinh}{\left(\frac{\sqrt{3} x}{3} \right)} - \int \frac{\operatorname{asinh}{\left(\frac{\sqrt{3} x}{3} \right)}}{x}\, dx$$
The answer [src]
 oo               
  /               
 |                
 |     log(x)     
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  3 + x     
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 3}}\, dx$$
=
=
 oo               
  /               
 |                
 |     log(x)     
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  3 + x     
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 3}}\, dx$$
Integral(log(x)/sqrt(3 + x^2), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.