oo / | | log(x) | ----------- dx | ________ | / 2 | \/ x + 3 | / 1
Integral(log(x)/sqrt(x^2 + 3), (x, 1, oo))
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
InverseHyperbolicRule(func=asinh, context=1/sqrt(_u**2 + 1), symbol=_u)
So, the result is:
Now substitute back in:
So, the result is:
Now evaluate the sub-integral.
Don't know the steps in finding this integral.
But the integral is
Add the constant of integration:
The answer is:
/
|
| / ___\
/ | |x*\/ 3 |
| | asinh|-------| / ___\
| log(x) | \ 3 / |x*\/ 3 |
| ----------- dx = C - | -------------- dx + asinh|-------|*log(x)
| ________ | x \ 3 /
| / 2 |
| \/ x + 3 /
|
/
oo / | | log(x) | ----------- dx | ________ | / 2 | \/ 3 + x | / 1
=
oo / | | log(x) | ----------- dx | ________ | / 2 | \/ 3 + x | / 1
Integral(log(x)/sqrt(3 + x^2), (x, 1, oo))
Use the examples entering the upper and lower limits of integration.