Mister Exam

Other calculators

Integral of ln(sin(x))/sqrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
 --               
 2                
  /               
 |                
 |  log(sin(x))   
 |  ----------- dx
 |       ___      
 |     \/ x       
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{\log{\left(\sin{\left(x \right)} \right)}}{\sqrt{x}}\, dx$$
Integral(log(sin(x))/(sqrt(x)), (x, 0, pi/2))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                            /                                     
  /                        |                                      
 |                         |   ___                                
 | log(sin(x))             | \/ x *cos(x)          ___            
 | ----------- dx = C - 2* | ------------ dx + 2*\/ x *log(sin(x))
 |      ___                |    sin(x)                            
 |    \/ x                 |                                      
 |                        /                                       
/                                                                 
$${{\left(3\,\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2\,x\right)-6\, \cos \left(2\,x\right)+3\right)\,\int {{{\left(\left(40\,x^2-12\,\pi \,x+6\,\log 2\right)\,\sin \left(2\,x\right)+\left(\left(6-24\,\log 2\right)\,x-3\,\pi\right)\,\cos \left(2\,x\right)-6\,x+3\,\pi\right) \,\sin \left(4\,x\right)+\left(\left(\left(24\,\log 2-6\right)\,x+3 \,\pi\right)\,\sin \left(2\,x\right)+\left(40\,x^2-12\,\pi\,x+6\, \log 2\right)\,\cos \left(2\,x\right)-6\,\log 2\right)\,\cos \left(4 \,x\right)+\left(-80\,x^2+24\,\pi\,x-12\,\log 2\right)\,\sin ^2 \left(2\,x\right)+\left(\left(24\,\log 2+6\right)\,x-3\,\pi\right)\, \sin \left(2\,x\right)+\left(-80\,x^2+24\,\pi\,x-12\,\log 2\right)\, \cos ^2\left(2\,x\right)+\left(40\,x^2-12\,\pi\,x+18\,\log 2\right) \,\cos \left(2\,x\right)-6\,\log 2}\over{6\,e^{{{\log x}\over{2}}}\, \sin ^2\left(4\,x\right)-24\,e^{{{\log x}\over{2}}}\,\sin \left(2\,x \right)\,\sin \left(4\,x\right)+6\,e^{{{\log x}\over{2}}}\,\cos ^2 \left(4\,x\right)+\left(12\,e^{{{\log x}\over{2}}}-24\,e^{{{\log x }\over{2}}}\,\cos \left(2\,x\right)\right)\,\cos \left(4\,x\right)+ 24\,e^{{{\log x}\over{2}}}\,\sin ^2\left(2\,x\right)+24\,e^{{{\log x }\over{2}}}\,\cos ^2\left(2\,x\right)-24\,e^{{{\log x}\over{2}}}\, \cos \left(2\,x\right)+6\,e^{{{\log x}\over{2}}}}}}{\;dx}+\sqrt{x}\, \left(\left(3\,\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2\,x\right)- 6\,\cos \left(2\,x\right)+3\right)\,\log \left(\sin ^2x+\cos ^2x+2\, \cos x+1\right)+\left(3\,\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2 \,x\right)-6\,\cos \left(2\,x\right)+3\right)\,\log \left(\sin ^2x+ \cos ^2x-2\,\cos x+1\right)-6\,\log 2\,\sin ^2\left(2\,x\right)+ \left(3\,\pi-10\,x\right)\,\sin \left(2\,x\right)-6\,\log 2\,\cos ^2 \left(2\,x\right)+6\,\log 2\,\cos \left(2\,x\right)\right)}\over{3\, \sin ^2\left(2\,x\right)+3\,\cos ^2\left(2\,x\right)-6\,\cos \left(2 \,x\right)+3}}$$
The answer [src]
 pi               
 --               
 2                
  /               
 |                
 |  log(sin(x))   
 |  ----------- dx
 |       ___      
 |     \/ x       
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{\log{\left(\sin{\left(x \right)} \right)}}{\sqrt{x}}\, dx$$
=
=
 pi               
 --               
 2                
  /               
 |                
 |  log(sin(x))   
 |  ----------- dx
 |       ___      
 |     \/ x       
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{\log{\left(\sin{\left(x \right)} \right)}}{\sqrt{x}}\, dx$$
Numerical answer [src]
-4.0980831368609
-4.0980831368609

    Use the examples entering the upper and lower limits of integration.