The answer (Indefinite)
[src]
/
/ |
| | ___
| log(sin(x)) | \/ x *cos(x) ___
| ----------- dx = C - 2* | ------------ dx + 2*\/ x *log(sin(x))
| ___ | sin(x)
| \/ x |
| /
/
$${{\left(3\,\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2\,x\right)-6\,
\cos \left(2\,x\right)+3\right)\,\int {{{\left(\left(40\,x^2-12\,\pi
\,x+6\,\log 2\right)\,\sin \left(2\,x\right)+\left(\left(6-24\,\log
2\right)\,x-3\,\pi\right)\,\cos \left(2\,x\right)-6\,x+3\,\pi\right)
\,\sin \left(4\,x\right)+\left(\left(\left(24\,\log 2-6\right)\,x+3
\,\pi\right)\,\sin \left(2\,x\right)+\left(40\,x^2-12\,\pi\,x+6\,
\log 2\right)\,\cos \left(2\,x\right)-6\,\log 2\right)\,\cos \left(4
\,x\right)+\left(-80\,x^2+24\,\pi\,x-12\,\log 2\right)\,\sin ^2
\left(2\,x\right)+\left(\left(24\,\log 2+6\right)\,x-3\,\pi\right)\,
\sin \left(2\,x\right)+\left(-80\,x^2+24\,\pi\,x-12\,\log 2\right)\,
\cos ^2\left(2\,x\right)+\left(40\,x^2-12\,\pi\,x+18\,\log 2\right)
\,\cos \left(2\,x\right)-6\,\log 2}\over{6\,e^{{{\log x}\over{2}}}\,
\sin ^2\left(4\,x\right)-24\,e^{{{\log x}\over{2}}}\,\sin \left(2\,x
\right)\,\sin \left(4\,x\right)+6\,e^{{{\log x}\over{2}}}\,\cos ^2
\left(4\,x\right)+\left(12\,e^{{{\log x}\over{2}}}-24\,e^{{{\log x
}\over{2}}}\,\cos \left(2\,x\right)\right)\,\cos \left(4\,x\right)+
24\,e^{{{\log x}\over{2}}}\,\sin ^2\left(2\,x\right)+24\,e^{{{\log x
}\over{2}}}\,\cos ^2\left(2\,x\right)-24\,e^{{{\log x}\over{2}}}\,
\cos \left(2\,x\right)+6\,e^{{{\log x}\over{2}}}}}}{\;dx}+\sqrt{x}\,
\left(\left(3\,\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2\,x\right)-
6\,\cos \left(2\,x\right)+3\right)\,\log \left(\sin ^2x+\cos ^2x+2\,
\cos x+1\right)+\left(3\,\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2
\,x\right)-6\,\cos \left(2\,x\right)+3\right)\,\log \left(\sin ^2x+
\cos ^2x-2\,\cos x+1\right)-6\,\log 2\,\sin ^2\left(2\,x\right)+
\left(3\,\pi-10\,x\right)\,\sin \left(2\,x\right)-6\,\log 2\,\cos ^2
\left(2\,x\right)+6\,\log 2\,\cos \left(2\,x\right)\right)}\over{3\,
\sin ^2\left(2\,x\right)+3\,\cos ^2\left(2\,x\right)-6\,\cos \left(2
\,x\right)+3}}$$