Mister Exam

Integral of ln(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     /1\   
 |  log|-| dx
 |     \x/   
 |           
/            
0            
01log(1x)dx\int\limits_{0}^{1} \log{\left(\frac{1}{x} \right)}\, dx
Integral(log(1/x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (log(u)u2)du\int \left(- \frac{\log{\left(u \right)}}{u^{2}}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(u)u2du=log(u)u2du\int \frac{\log{\left(u \right)}}{u^{2}}\, du = - \int \frac{\log{\left(u \right)}}{u^{2}}\, du

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=log(u)u = \log{\left(u \right)}.

            Then let du=duudu = \frac{du}{u} and substitute dudu:

            ueudu\int u e^{- u}\, du

            1. Let u=uu = - u.

              Then let du=dudu = - du and substitute dudu:

              ueudu\int u e^{u}\, du

              1. Use integration by parts:

                udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

                Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

                Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

                To find v(u)v{\left(u \right)}:

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                Now evaluate the sub-integral.

              2. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              Now substitute uu back in:

              ueueu- u e^{- u} - e^{- u}

            Now substitute uu back in:

            log(u)u1u- \frac{\log{\left(u \right)}}{u} - \frac{1}{u}

          Method #2

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=log(u)u{\left(u \right)} = \log{\left(u \right)} and let dv(u)=1u2\operatorname{dv}{\left(u \right)} = \frac{1}{u^{2}}.

            Then du(u)=1u\operatorname{du}{\left(u \right)} = \frac{1}{u}.

            To find v(u)v{\left(u \right)}:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            (1u2)du=1u2du\int \left(- \frac{1}{u^{2}}\right)\, du = - \int \frac{1}{u^{2}}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

            So, the result is: 1u\frac{1}{u}

        So, the result is: log(u)u+1u\frac{\log{\left(u \right)}}{u} + \frac{1}{u}

      Now substitute uu back in:

      xlog(x)+x- x \log{\left(x \right)} + x

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(1x)u{\left(x \right)} = \log{\left(\frac{1}{x} \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = - \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

  2. Now simplify:

    x(1log(x))x \left(1 - \log{\left(x \right)}\right)

  3. Add the constant of integration:

    x(1log(x))+constantx \left(1 - \log{\left(x \right)}\right)+ \mathrm{constant}


The answer is:

x(1log(x))+constantx \left(1 - \log{\left(x \right)}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                             
 |    /1\                      
 | log|-| dx = C + x - x*log(x)
 |    \x/                      
 |                             
/                              
log(1x)dx=Cxlog(x)+x\int \log{\left(\frac{1}{x} \right)}\, dx = C - x \log{\left(x \right)} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
1
11
=
=
1
11
1
Numerical answer [src]
1.0
1.0
The graph
Integral of ln(1/x) dx

    Use the examples entering the upper and lower limits of integration.