Mister Exam

Other calculators

Integral of sqrt(ln((1/x)+e)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                    
  /                    
 |                     
 |      ____________   
 |     /    /1    \    
 |    /  log|- + E|  dx
 |  \/      \x    /    
 |                     
/                      
1                      
$$\int\limits_{1}^{\infty} \sqrt{\log{\left(e + \frac{1}{x} \right)}}\, dx$$
Integral(sqrt(log(1/x + E)), (x, 1, oo))
The answer [src]
 oo                    
  /                    
 |                     
 |      ____________   
 |     /    /    1\    
 |    /  log|E + -|  dx
 |  \/      \    x/    
 |                     
/                      
1                      
$$\int\limits_{1}^{\infty} \sqrt{\log{\left(e + \frac{1}{x} \right)}}\, dx$$
=
=
 oo                    
  /                    
 |                     
 |      ____________   
 |     /    /    1\    
 |    /  log|E + -|  dx
 |  \/      \    x/    
 |                     
/                      
1                      
$$\int\limits_{1}^{\infty} \sqrt{\log{\left(e + \frac{1}{x} \right)}}\, dx$$
Integral(sqrt(log(E + 1/x)), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.