2*pi / | | / x \ | log\E + 1/ dx | / 0
Integral(log(E^x + 1), (x, 0, 2*pi))
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
Don't know the steps in finding this integral.
But the integral is
Now simplify:
Add the constant of integration:
The answer is:
/
/ |
| | x
| / x \ | x*e / x \
| log\E + 1/ dx = C - | ------ dx + x*log\E + 1/
| | x
/ | 1 + e
|
/
2*pi
/
|
| x
| x*e / 2*pi\
- | ------ dx + 2*pi*log\1 + e /
| x
| 1 + e
|
/
0
=
2*pi
/
|
| x
| x*e / 2*pi\
- | ------ dx + 2*pi*log\1 + e /
| x
| 1 + e
|
/
0
-Integral(x*exp(x)/(1 + exp(x)), (x, 0, 2*pi)) + 2*pi*log(1 + exp(2*pi))
Use the examples entering the upper and lower limits of integration.