Mister Exam

Other calculators

Integral of ln(e^x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi              
   /               
  |                
  |     / x    \   
  |  log\E  + 1/ dx
  |                
 /                 
 0                 
$$\int\limits_{0}^{2 \pi} \log{\left(e^{x} + 1 \right)}\, dx$$
Integral(log(E^x + 1), (x, 0, 2*pi))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. Don't know the steps in finding this integral.

    But the integral is

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                          /                         
  /                      |                          
 |                       |     x                    
 |    / x    \           |  x*e             / x    \
 | log\E  + 1/ dx = C -  | ------ dx + x*log\E  + 1/
 |                       |      x                   
/                        | 1 + e                    
                         |                          
                        /                           
$$\int \log{\left(e^{x} + 1 \right)}\, dx = C + x \log{\left(e^{x} + 1 \right)} - \int \frac{x e^{x}}{e^{x} + 1}\, dx$$
The answer [src]
   2*pi                               
     /                                
    |                                 
    |      x                          
    |   x*e                /     2*pi\
-   |  ------ dx + 2*pi*log\1 + e    /
    |       x                         
    |  1 + e                          
    |                                 
   /                                  
   0                                  
$$- \int\limits_{0}^{2 \pi} \frac{x e^{x}}{e^{x} + 1}\, dx + 2 \pi \log{\left(1 + e^{2 \pi} \right)}$$
=
=
   2*pi                               
     /                                
    |                                 
    |      x                          
    |   x*e                /     2*pi\
-   |  ------ dx + 2*pi*log\1 + e    /
    |       x                         
    |  1 + e                          
    |                                 
   /                                  
   0                                  
$$- \int\limits_{0}^{2 \pi} \frac{x e^{x}}{e^{x} + 1}\, dx + 2 \pi \log{\left(1 + e^{2 \pi} \right)}$$
-Integral(x*exp(x)/(1 + exp(x)), (x, 0, 2*pi)) + 2*pi*log(1 + exp(2*pi))
Numerical answer [src]
20.5598092639839
20.5598092639839

    Use the examples entering the upper and lower limits of integration.