ln(ax+b)/√(ax+b)
1 / | | log(a*x + b) | ------------ dx | _________ | \/ a*x + b | / 0
Integral(log(a*x + b)/(sqrt(a*x + b)), (x, 0, 1))
PiecewiseRule(subfunctions=[(URule(u_var=_u, u_func=sqrt(a*x + b), constant=None, substep=ConstantTimesRule(constant=2/a, other=log(_u**2), substep=PartsRule(u=log(_u**2), dv=1, v_step=ConstantRule(constant=1, context=1, symbol=_u), second_step=ConstantRule(constant=2, context=2, symbol=_u), context=log(_u**2), symbol=_u), context=2*log(_u**2)/a, symbol=_u), context=log(a*x + b)/(sqrt(a*x + b)), symbol=x), Ne(a, 0)), (ConstantRule(constant=log(b)/sqrt(b), context=log(b)/sqrt(b), symbol=x), True)], context=log(a*x + b)/(sqrt(a*x + b)), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
// / _________ _________ \ \ / ||2*\- 2*\/ b + a*x + \/ b + a*x *log(b + a*x)/ | | ||---------------------------------------------- for a != 0| | log(a*x + b) || a | | ------------ dx = C + |< | | _________ || x*log(b) | | \/ a*x + b || -------- otherwise | | || ___ | / \\ \/ b /
/ / ___ ___ \ / _______ _______ \ | 2*\- 2*\/ b + \/ b *log(b)/ 2*\- 2*\/ a + b + \/ a + b *log(a + b)/ |- ---------------------------- + ---------------------------------------- for And(a > -oo, a < oo, a != 0) | a a < | log(b) | ------ otherwise | ___ \ \/ b
=
/ / ___ ___ \ / _______ _______ \ | 2*\- 2*\/ b + \/ b *log(b)/ 2*\- 2*\/ a + b + \/ a + b *log(a + b)/ |- ---------------------------- + ---------------------------------------- for And(a > -oo, a < oo, a != 0) | a a < | log(b) | ------ otherwise | ___ \ \/ b
Use the examples entering the upper and lower limits of integration.