Mister Exam

You entered:

ln(ax+b)/√(ax+b)

What you mean?

Integral of ln(ax+b)/√(ax+b) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  log(a*x + b)   
 |  ------------ dx
 |    _________    
 |  \/ a*x + b     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\log{\left(a x + b \right)}}{\sqrt{a x + b}}\, dx$$
Integral(log(a*x + b)/(sqrt(a*x + b)), (x, 0, 1))
Detail solution

    PiecewiseRule(subfunctions=[(URule(u_var=_u, u_func=sqrt(a*x + b), constant=None, substep=ConstantTimesRule(constant=2/a, other=log(_u**2), substep=PartsRule(u=log(_u**2), dv=1, v_step=ConstantRule(constant=1, context=1, symbol=_u), second_step=ConstantRule(constant=2, context=2, symbol=_u), context=log(_u**2), symbol=_u), context=2*log(_u**2)/a, symbol=_u), context=log(a*x + b)/(sqrt(a*x + b)), symbol=x), Ne(a, 0)), (ConstantRule(constant=log(b)/sqrt(b), context=log(b)/sqrt(b), symbol=x), True)], context=log(a*x + b)/(sqrt(a*x + b)), symbol=x)

  1. Now simplify:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                         //  /      _________     _________             \            \
  /                      ||2*\- 2*\/ b + a*x  + \/ b + a*x *log(b + a*x)/            |
 |                       ||----------------------------------------------  for a != 0|
 | log(a*x + b)          ||                      a                                   |
 | ------------ dx = C + |<                                                          |
 |   _________           ||                   x*log(b)                               |
 | \/ a*x + b            ||                   --------                     otherwise |
 |                       ||                      ___                                 |
/                        \\                    \/ b                                  /
$${{4\,\left({{\sqrt{a\,x+b}\,\log \left(a\,x+b\right)}\over{2}}- \sqrt{a\,x+b}\right)}\over{a}}$$
The answer [src]
/    /      ___     ___       \     /      _______     _______           \                                  
|  2*\- 2*\/ b  + \/ b *log(b)/   2*\- 2*\/ a + b  + \/ a + b *log(a + b)/                                  
|- ---------------------------- + ----------------------------------------  for And(a > -oo, a < oo, a != 0)
|               a                                    a                                                      
<                                                                                                           
|                                 log(b)                                                                    
|                                 ------                                               otherwise            
|                                   ___                                                                     
\                                 \/ b                                                                      
$$\begin{cases} - \frac{2 \left(\sqrt{b} \log{\left(b \right)} - 2 \sqrt{b}\right)}{a} + \frac{2 \left(\sqrt{a + b} \log{\left(a + b \right)} - 2 \sqrt{a + b}\right)}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\\frac{\log{\left(b \right)}}{\sqrt{b}} & \text{otherwise} \end{cases}$$
=
=
/    /      ___     ___       \     /      _______     _______           \                                  
|  2*\- 2*\/ b  + \/ b *log(b)/   2*\- 2*\/ a + b  + \/ a + b *log(a + b)/                                  
|- ---------------------------- + ----------------------------------------  for And(a > -oo, a < oo, a != 0)
|               a                                    a                                                      
<                                                                                                           
|                                 log(b)                                                                    
|                                 ------                                               otherwise            
|                                   ___                                                                     
\                                 \/ b                                                                      
$$\begin{cases} - \frac{2 \left(\sqrt{b} \log{\left(b \right)} - 2 \sqrt{b}\right)}{a} + \frac{2 \left(\sqrt{a + b} \log{\left(a + b \right)} - 2 \sqrt{a + b}\right)}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\\frac{\log{\left(b \right)}}{\sqrt{b}} & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.